Câu hỏi:

31/12/2025 3 Lưu

Xét trong mặt phẳng tọa độ \(Oxy\). Khi đó:

a) Đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) có tâm \(I\left( {2; - 1} \right)\) và bán kính \(R = 9\).

Đúng
Sai

b) Phương trình đường tròn tâm \(I\left( { - 3; - 5} \right)\) và bán kính \(R = 1\) là \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 5} \right)^2} = 1\).

Đúng
Sai

c) Phương trình đường tròn đi qua ba điểm \(A\left( {5;3} \right),B\left( {1; - 5} \right),C\left( {2;2} \right)\) là \(\left( C \right):{\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 25\).

Đúng
Sai
d) Đường tròn \(\left( C \right):{x^2} + {y^2} - 4x + 8y + 4 = 0\) có tâm \(I\left( {2; - 4} \right)\) và bán kính \(R = 9\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) ) Đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) có tâm \(I\left( {2; - 1} \right)\) và bán kính \(R = 3\).

b) Phương trình đường tròn tâm \(I\left( { - 3; - 5} \right)\) và bán kính \(R = 1\) là \(\left( C \right):{\left( {x + 3} \right)^2} + {\left( {y + 5} \right)^2} = 1\).

c) Giả sử \(\left( C \right):{x^2} + {y^2} - 2ax - 2by + c = 0\).

Đường tròn \(\left( C \right)\) đi qua ba điểm \(A\left( {5;3} \right),B\left( {1; - 5} \right),C\left( {2;2} \right)\) nên ta có hệ

\(\left\{ \begin{array}{l} - 10a - 6b + c =  - 34\\ - 2a + 10b + c =  - 26\\ - 4a - 4b + c =  - 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 5\\b =  - 2\\c = 4\end{array} \right.\).

Do đó \(\left( C \right):{x^2} + {y^2} - 10x + 4y + 4 = 0\)\( \Leftrightarrow {\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 25\).

d) Đường tròn \(\left( C \right):{x^2} + {y^2} - 4x + 8y + 4 = 0\) có tâm \(I\left( {2; - 4} \right)\) và bán kính \(R = \sqrt {{2^2} + {{\left( { - 4} \right)}^2} - 4}  = 4\).

Đáp án: a) Sai;    b) Sai;   c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Theo đề ta có \({F_1}{F_2} = 2c = 50 \Rightarrow c = 25\) và \(M{F_1} + M{F_2} = 2a = 100 \Rightarrow a = 50\).

Lại có \({b^2} = {a^2} - {c^2} = {50^2} - {25^2} = 1875\).

Vậy elip có phương trình \(\frac{{{x^2}}}{{2500}} + \frac{{{y^2}}}{{1875}} = 1\).

Lời giải

Lời giải

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}7x - 2y - 3 = 0\\6x - y - 4 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right. \Rightarrow A\left( {1;2} \right)\).

\(B\) đối xứng với \(A\) qua \(M\), suy ra \(B = \left( {3; - 2} \right)\).

Đường thẳng \(BC\) đi qua \(B\) và vuông góc với đường thẳng \(6x - y - 4 = 0\) có phương trình là

\(x + 6y + 9 = 0\).

Tọa độ trung điểm \(N\) của đoạn thẳng \(BC\) là nghiệm của hệ \(\left\{ \begin{array}{l}7x - 2y - 3 = 0\\x + 6y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y =  - \frac{3}{2}\end{array} \right.\).

Suy ra \(\overrightarrow {AC}  = 2\overrightarrow {MN}  = \left( { - 4; - 3} \right)\).

Đường thẳng \(AC\) đi qua \(A\) và nhận \(\overrightarrow n  = \left( {3; - 4} \right)\) làm vectơ pháp tuyến có phương trình là

\(3x - 4y + 5 = 0\).

Câu 5

A. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\). 
B. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} =  - 1\left( {a > b > 0} \right)\).  
C. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).    
D. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} =  - 1\left( {a > b > 0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1\).
B. \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{25}} =  - 1\). 
C. \(\frac{{{x^2}}}{{20}} + \frac{{{y^2}}}{{16}} = 1\).   
D. \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{9} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP