Một tháp triển lãm có mặt cắt hình hypebol có phương trình \(\frac{{{x^2}}}{{{{18}^2}}} - \frac{{{y^2}}}{{{{36}^2}}} = 1\). Cho biết chiều cao của tháp là 100 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol bằng khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp (đơn vị m) (làm tròn kết quả đến hàng đơn vị).
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Kết nối tri thức Chương 7 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Lời giải
Do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng \(r\).
Do điểm \(M\left( {r;50} \right)\) nằm trên hypebol nên thay tọa độ của điểm \(M\) vào phương trình của hypebol ta có \(\frac{{{r^2}}}{{{{18}^2}}} - \frac{{{{50}^2}}}{{{{36}^2}}} = 1 \Rightarrow r = 18\sqrt {1 + \frac{{{{50}^2}}}{{{{36}^2}}}} \approx 31\) m.
Vậy bán kính của nóc và đáy của tháp bằng 31 m.
Trả lời: 31.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử \(\Delta \) cắt các tia \(Ox,Oy\) lần lượt tại \(A\left( {a;0} \right),B\left( {0;b} \right),a > 0,b > 0\)\( \Rightarrow \Delta :\frac{x}{a} + \frac{y}{b} = 1\).
Vì \(\Delta \) đi qua \(M\left( { - 2;2} \right) \Rightarrow \frac{{ - 2}}{a} + \frac{2}{b} = 1\) (1).
Mà \({S_{\Delta ABO}} = \frac{1}{2}OA \cdot OB = \frac{{ab}}{2} = 1 \Leftrightarrow ab = 2 \Rightarrow b = \frac{2}{a}\left( 2 \right)\).
Thay \(\left( 2 \right)\) vào (1) ta được \(\frac{{ - 2}}{a} + \frac{2}{{\frac{2}{a}}} = 1 \Leftrightarrow \frac{{ - 2}}{a} + a = 1 \Leftrightarrow {a^2} - a - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}a = - 1\\a = 2\end{array} \right. \Rightarrow a = 2\).
Với \(a = 2 \Rightarrow b = 1\). Do đó \(\Delta :\frac{x}{2} + \frac{y}{1} = 1\).
Lời giải
Lời giải
Có \(\overrightarrow {AB} = \left( { - 1;3} \right)\) là vectơ chỉ phương của \(AB\) nên nhận \(\overrightarrow n = \left( {3;1} \right)\) làm vectơ pháp tuyến.
Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow n = \left( {3;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3x + y - 8 = 0\).
Vì \(C \in d \Rightarrow C\left( {t;2t - 8} \right)\).
Ta có \(AB = \sqrt {10} \) mà \({S_{\Delta ABC}} = 2 \Rightarrow d\left( {C,AB} \right) = \frac{4}{{\sqrt {10} }}\).
Khi đó \(\frac{{\left| {3t + \left( {2t - 8} \right) - 8} \right|}}{{\sqrt {{3^2} + {1^2}} }} = \frac{4}{{\sqrt {10} }}\)\( \Leftrightarrow \left| {5t - 16} \right| = 4\)\( \Leftrightarrow \left[ \begin{array}{l}t = 4\\t = \frac{{12}}{5}\end{array} \right.\).
Với \(t = 4 \Rightarrow C\left( {4;0} \right)\) (loại).
Với \(t = \frac{{12}}{5} \Rightarrow C\left( {\frac{{12}}{5}; - \frac{{16}}{5}} \right)\). Do đó \(a + 2b = - 4\).
Trả lời: −4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Độ dài vectơ \(\overrightarrow {OA} \) bằng \(\sqrt {10} \).
b) Phương trình đường thẳng đi qua điểm \(A\) và vuông góc với \(BC\) là \(4x - 3y - 15 = 0\).
c) Khoảng cách từ điểm \(B\) đến đường thẳng \(AC\) là \(\frac{{\sqrt {13} }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.