Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(d:x - y + 1 = 0\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y - 4 = 0\) . Tìm tọa độ điểm \(M \in d\) sao cho từ \(M\) kẻ được hai tiếp tuyến \(MA,MB\) thỏa mãn khoảng cách từ \(N\left( {0;\frac{1}{2}} \right)\) đến đường thẳng\(AB\) bằng 1.
Quảng cáo
Trả lời:
Đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y - 4 = 0\) có tâm \(I\left( {1; - 2} \right)\).
Ta có điểm \(M\)thuộc \(d:x - y + 1 = 0\) nên \(M\left( {a;a + 1} \right)\).
Gọi \(K\) trung điểm của \(MI\)thì \(K\left( {\frac{{a + 1}}{2};\frac{{a - 1}}{2}} \right)\).
Vì \(\Delta MAI\) và \(\Delta MBI\) lần lượt vuông tại \(A\) và \(B\) (định nghĩa tiếp tuyến) nên \(KA = KB = \frac{1}{2}MI\).
Đường tròn \(\left( {C'} \right)\) tâm \(K\), đường kính \(MI\) nên có phương trình
\({\left( {x - \frac{{a + 1}}{2}} \right)^2} + {\left( {y - \frac{{a - 1}}{2}} \right)^2} = \frac{{{a^2} + 2a + 5}}{2} \Leftrightarrow {x^2} + {y^2} - \left( {a + 1} \right)x - \left( {a - 1} \right)y - a - 2 = 0\).
Đường thẳng \(AB\) là giao của hai đường tròn \(\left( C \right)\) và \(\left( {C'} \right)\) nên tọa độ điểm \(A,B\) thỏa mãn hệ phương trình
\(\left\{ \begin{array}{l}{x^2} + {y^2} - 2x + 4y - 4 = 0\\{x^2} + {y^2} - \left( {a + 1} \right)x - \left( {a - 1} \right)y - a - 2 = 0\end{array} \right. \Rightarrow \left( {1 - a} \right)x - \left( {a + 3} \right)y - a + 2 = 0\).
Suy ra đường thẳng\(AB\) có phương trình \(\left( {1 - a} \right)x - \left( {a + 3} \right)y - a + 2 = 0\).
Khoảng cách từ \(N\left( {0;\frac{1}{2}} \right)\)đến \(AB\) là \(d\left( {N,AB} \right) = \frac{{\left| {1 - 3a} \right|}}{{2\sqrt {{{\left( {1 - a} \right)}^2} + {{\left( {a + 3} \right)}^2}} }} = 1\).
\[ \Rightarrow 2\sqrt {2{a^2} + 4a + 10} = \left| {1 - 3a} \right|\]
\( \Rightarrow 4\left( {2{a^2} + 4a + 10} \right) = 9{a^2} - 6a + 1\)
\( \Leftrightarrow {a^2} - 22a - 39 = 0 \Leftrightarrow a = 11 \pm 4\sqrt {10} \).
Thử lại ta thấy cả hai giá trị của \(a\) đều thỏa mãn.
Vậy \(M\left( {11 + 4\sqrt {10} ;12 + 4\sqrt {10} } \right)\) hoặc \(M\left( {11 - 4\sqrt {10} ;12 - 4\sqrt {10} } \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: \(\overrightarrow {AB} = \left( {3 - 1;\, - 6 - \left( { - 2} \right)} \right) = \left( {2;\,\, - 4} \right)\).
Câu 2
A. \[S = \left( { - \infty ;\,\, - \frac{1}{2}} \right] \cup \left[ {2;\,\, + \infty } \right)\];
B. \(S = \left( { - 2;\,\,\frac{1}{2}} \right)\);
Lời giải
Đáp án đúng là: B
Xét tam thức bậc hai \(f\left( x \right) = - 2{x^2} - 3x + 2\) có hai nghiệm là \({x_1} = - 2\), \({x_2} = \frac{1}{2}\).
Mặt khác có hệ số \(a = - 2 < 0\), do đó ta có bảng xét dấu sau:
|
\(x\) |
\( - \infty \) – 2 \(\frac{1}{2}\) \( + \infty \) |
|
\(f\left( x \right)\) |
– 0 + 0 – |
Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) = - 2{x^2} - 3x + 2 > 0\)\( \Leftrightarrow x \in \left( { - 2;\,\,\frac{1}{2}} \right)\).
Vậy tập nghiệm của bất phương trình đã cho là \(S = \left( { - 2;\,\,\frac{1}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Trong mặt phẳng tọa độ \[Oxy\], phương trình nào dưới đây là phương trình chính tắc của một hypebol?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.