Với giá trị nào của \[m\] thì hai đường thẳng. \[{d_1}:\left( {m - 3} \right)x + 2y + {m^2} - 1 = 0\] và \[{d_2}: - x + my + {m^2} - 2m + 1 = 0\] cắt nhau?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
\[\left\{ \begin{array}{l}{d_1}:\left( {m - 3} \right)x + 2y + {m^2} - 1 = 0\\{d_2}: - x + my + {m^2} - 2m + 1 = 0\end{array} \right.\].
Trường hợp 1: \(m = 0\) ta có \({d_1}: - 3x + 2y - 1 = 0;\,{d_2}: - x + 1 = 0\) có hai vectơ pháp tuyến là \(\overrightarrow {{n_1}} \left( { - 3;2} \right);\overrightarrow {{n_2}} \left( { - 1;0} \right)\) không cùng phương nên \({d_1}\) và \({d_2}\) cắt nhau.
Vậy với \(m = 0\) thoả mãn
Trường hợp 2: \(m \ne 0\) thì \({d_1}\) và \({d_2}\) có vectơ pháp tuyến là \(\overrightarrow {{n_1}} \left( {m - 3;2} \right);\overrightarrow {{n_2}} \left( { - 1;m} \right)\) để \({d_1}\) và \({d_2}\) cắt nhau thì \(\frac{{m - 3}}{{ - 1}} \ne \frac{2}{m} \Leftrightarrow {m^2} - 3m + 2 \ne 0 \Leftrightarrow \left[ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Giá trị lớn nhất của mẫu số liệu là 187, giá trị nhỏ nhất của mẫu số liệu là 162.
Vậy khoảng biến thiên của mẫu số liệu là \[R = 187--162 = 25\].
Lời giải
Đáp án đúng là: A
Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
162; 164; 165; 170; 175; 175; 176; 183; 187.
Mẫu số liệu gồm 9 số liệu nên trung vị là số ở vị trí thứ 5 và là số 175 hay \({Q_2} = 175\).
Nửa số liệu bên trái \({Q_2}\) là: 162; 164; 165; 170. Do đó, \({Q_1} = \frac{{164 + 165}}{2} = 164,5\).
Nửa số liệu bên phải \({Q_2}\)là: 175; 176; 183; 187. Do đó, \({Q_3} = \frac{{183 + 176}}{2} = 179,5\).
Vậy khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 179,5 - 164,5 = 15\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.