Câu hỏi:

05/01/2026 8 Lưu

Hai vectơ có cùng độ dài và cùng hướng gọi là

 

A. Hai vectơ cùng phương.                                        

B. Hai vectơ đối nhau.     

C. Hai vectơ ngược hướng.    
D. Hai vectơ bằng nhau

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hai vectơ có cùng độ dài và cùng hướng gọi là hai vectơ bằng nhau. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 1,AC = \sqrt 3 \). (ảnh 1)

a) Vì \(\Delta ABC\) vuông tại \(A\), ta có:

\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} = 2\).

\(\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \cos \widehat {ABC} = \frac{{AB}}{{BC}} = \frac{1}{2} \Rightarrow \widehat {ABC} = 60^\circ \Rightarrow \widehat {ACB} = 30^\circ \).

\(\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = \cos \left( {\overrightarrow {CD} ,\overrightarrow {CB} } \right) = \cos \widehat {BCD} = \cos 150^\circ = - \frac{{\sqrt 3 }}{2}\).

b) \(\overrightarrow {BA} \cdot \overrightarrow {BC} \)\( = \left| {\overrightarrow {BA} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 1 \cdot 2 \cdot \frac{1}{2} = 1\).

\(\overrightarrow {AC} \cdot \overrightarrow {CB} = \left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {CB} } \right| \cdot \cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = \sqrt 3 \cdot 2 \cdot \left( { - \frac{{\sqrt 3 }}{2}} \right) = - 3\).

Câu 2

a) \(\overrightarrow {CA} - \overrightarrow {CB} = \overrightarrow {AB} \).

Đúng
Sai

b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AM} = 3\overrightarrow {AM} \).

Đúng
Sai

c) \(\overrightarrow {BA} \cdot \overrightarrow {BC} = 9\).

Đúng
Sai
d) Độ dài vectơ \(\overrightarrow u = 2\overrightarrow {AB} + \overrightarrow {AC} \) bằng \(2\sqrt {13} \).
Đúng
Sai

Lời giải

Cho tam giác \(ABC\) vuông tại \(A\), \(AB = 3,AC = 4\). Gọi \(M\) là trung điểm \(BC\). (ảnh 1)

a) \(\overrightarrow {CA} - \overrightarrow {CB} = \overrightarrow {BA} \).

b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AM} = 2\overrightarrow {AM} + \overrightarrow {AM} = 3\overrightarrow {AM} \).

c) Xét \(\Delta ABC\) vuông tại \(A,\)\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\); \(\cos B = \frac{{AB}}{{BC}} = \frac{3}{5}\)

Khi đó \(\overrightarrow {BA} \cdot \overrightarrow {BC} = \left| {\overrightarrow {BA} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 3 \cdot 5 \cdot \frac{3}{5} = 9\).

d) Ta có \({\left( {2\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = 4{\overrightarrow {AB} ^2} + 4\overrightarrow {AB} \cdot \overrightarrow {AC} + {\overrightarrow {AC} ^2}\)\( = 4{\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2}\)\( = 4 \cdot {3^2} + {4^2} = 52\).

Suy ra \(\left| {\overrightarrow u } \right| = \sqrt {52} = 2\sqrt {13} \).

Đáp án: a) Sai;    b) Đúng;     c) Đúng;     d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\overrightarrow {AB} \cdot \overrightarrow {CA} = {a^2}\).

Đúng
Sai

b) \(\overrightarrow {AM} \cdot \overrightarrow {AC} = \frac{{{a^2}}}{3}\).

Đúng
Sai

c) \(\overrightarrow {AD} \cdot \overrightarrow {BD} + \overrightarrow {OM} \cdot \overrightarrow {AC} = \frac{{{a^2}}}{2}\).

Đúng
Sai

d) \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BD} + \overrightarrow {BC} } \right) = {a^2}\).

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP