Cho hình thoi \(ABCD\) có cạnh bằng 2, \(O\) là giao điểm của \(AC\) và \(BD\), \(\widehat B = 60^\circ \). Khi đó:
Cho hình thoi \(ABCD\) có cạnh bằng 2, \(O\) là giao điểm của \(AC\) và \(BD\), \(\widehat B = 60^\circ \). Khi đó:
a) \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = 60^\circ \).
b) \(\left( {\overrightarrow {AB} ,\overrightarrow {DA} } \right) = 30^\circ \).
c) \(\overrightarrow {DA} \cdot \overrightarrow {DC} = 3\).
d) \(\overrightarrow {OB} \cdot \overrightarrow {BA} = - 3\).
Quảng cáo
Trả lời:

a) \(ABCD\) là hình thoi, \(\widehat B = 60^\circ \) nên \(\Delta ABC\) đều. Suy ra \(\widehat {BAC} = 60^\circ \).
Khi đó \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 60^\circ \).
b) \(\left( {\overrightarrow {AB} ,\overrightarrow {DA} } \right) = \left( {\overrightarrow {DC} ,\overrightarrow {DA} } \right) = \widehat {ADC} = 60^\circ \).
c) \(\overrightarrow {DA} \cdot \overrightarrow {DC} = \left| {\overrightarrow {DA} } \right| \cdot \left| {\overrightarrow {DC} } \right| \cdot \cos \left( {\overrightarrow {DA} ,\overrightarrow {DC} } \right) = 2 \cdot 2 \cdot \cos 60^\circ = 2\).
d) Do \(ABCD\) là hình thoi nên \(AC \bot BD\).
Do \(\Delta ABC\) đều cạnh 2 nên \(BO = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \).
\(\overrightarrow {OB} \cdot \overrightarrow {BA} = - \overrightarrow {BO} \cdot \overrightarrow {BA} = - \left| {\overrightarrow {BO} } \right| \cdot \left| {\overrightarrow {BA} } \right| \cdot \cos \left( {\overrightarrow {BO} ,\overrightarrow {BA} } \right) = - \sqrt 3 \cdot 2 \cdot \cos 30^\circ = - 3\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì \(\Delta ABC\) vuông tại \(A\), ta có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} = 2\).
\(\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \cos \widehat {ABC} = \frac{{AB}}{{BC}} = \frac{1}{2} \Rightarrow \widehat {ABC} = 60^\circ \Rightarrow \widehat {ACB} = 30^\circ \).
\(\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = \cos \left( {\overrightarrow {CD} ,\overrightarrow {CB} } \right) = \cos \widehat {BCD} = \cos 150^\circ = - \frac{{\sqrt 3 }}{2}\).
b) \(\overrightarrow {BA} \cdot \overrightarrow {BC} \)\( = \left| {\overrightarrow {BA} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 1 \cdot 2 \cdot \frac{1}{2} = 1\).
\(\overrightarrow {AC} \cdot \overrightarrow {CB} = \left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {CB} } \right| \cdot \cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = \sqrt 3 \cdot 2 \cdot \left( { - \frac{{\sqrt 3 }}{2}} \right) = - 3\).
Câu 2
a) \(\overrightarrow {CA} - \overrightarrow {CB} = \overrightarrow {AB} \).
b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AM} = 3\overrightarrow {AM} \).
c) \(\overrightarrow {BA} \cdot \overrightarrow {BC} = 9\).
Lời giải

a) \(\overrightarrow {CA} - \overrightarrow {CB} = \overrightarrow {BA} \).
b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AM} = 2\overrightarrow {AM} + \overrightarrow {AM} = 3\overrightarrow {AM} \).
c) Xét \(\Delta ABC\) vuông tại \(A,\) có \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\); \(\cos B = \frac{{AB}}{{BC}} = \frac{3}{5}\)
Khi đó \(\overrightarrow {BA} \cdot \overrightarrow {BC} = \left| {\overrightarrow {BA} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 3 \cdot 5 \cdot \frac{3}{5} = 9\).
d) Ta có \({\left( {2\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = 4{\overrightarrow {AB} ^2} + 4\overrightarrow {AB} \cdot \overrightarrow {AC} + {\overrightarrow {AC} ^2}\)\( = 4{\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2}\)\( = 4 \cdot {3^2} + {4^2} = 52\).
Suy ra \(\left| {\overrightarrow u } \right| = \sqrt {52} = 2\sqrt {13} \).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Câu 3
a) \(\overrightarrow {AB} \cdot \overrightarrow {CA} = {a^2}\).
b) \(\overrightarrow {AM} \cdot \overrightarrow {AC} = \frac{{{a^2}}}{3}\).
c) \(\overrightarrow {AD} \cdot \overrightarrow {BD} + \overrightarrow {OM} \cdot \overrightarrow {AC} = \frac{{{a^2}}}{2}\).
d) \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BD} + \overrightarrow {BC} } \right) = {a^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.