Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(d:x - y + 3 = 0\) bằng
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(d:x - y + 3 = 0\) là:
\(d\left( {A;d} \right) = \frac{{\left| {1 - 1 + 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{3}{{\sqrt 2 }}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \[\overrightarrow {NM} = \left( { - 1 - 3;\,2 - \left( { - 1} \right)} \right) = \left( { - 4;\,\,3} \right)\].
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Đường thẳng \[{d_1}\] có vectơ chỉ phương \[{\vec u_1} = \left( { - 2;\,4} \right)\], lấy \[A\left( {2;\,8} \right) \in {d_1}\]
Đường thẳng \[{d_2}\] có vectơ chỉ phương \[{\vec u_2} = \left( {1;\, - 2} \right)\]
Ta có: \[\frac{1}{{ - 2}} = \frac{{ - 2}}{4}\] nên \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương
Ta lại có: \[A \in {d_2}\]
Do đó đường thẳng \[{d_1}\] trùng đường thẳng \[{d_2}\].
Câu 3
A. \(\left( {6;0} \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.