Câu hỏi:

06/01/2026 32 Lưu

Số hạng chứa \[{x^2}\] trong khai triển \[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}}\] với \[x \ne 0\], biết \[n\] là số nguyên dương thỏa mãn \[3C_{n + 1}^2 + n{P_2} = 4A_n^2\].

A. \[4{x^2}\]; 
B. \[4\]; 
C. \[6{x^2}\]; 
D. \[4.\frac{1}{{{x^2}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Từ phương trình:

\[3C_{n + 1}^2 + n{P_2} = 4A_n^2\]

\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right)!}}{{2\left( {n - 1} \right)!}} + 2n = 4.\frac{{n!}}{{\left( {n - 2} \right)!}}\]

\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right).n.\left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}} + 4n = 8.\frac{{n.\left( {n - 1} \right).\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}\]

\[ \Leftrightarrow 3n.\left( {n + 1} \right) + 4n = 8n.\left( {n - 1} \right)\]

\[ \Leftrightarrow 5{n^2} - 15n = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}n = 0\\n = 3\left( {tmdk} \right)\end{array} \right.\]

Với \[n = 3\], ta có:

 \[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}} = {\left( {\frac{1}{x} + {x^3}} \right)^4}\]

\[ = {\left( {\frac{1}{x}} \right)^4} + 4x{\left( {\frac{1}{x}} \right)^3} + 6{x^2}{\left( {\frac{1}{x}} \right)^2} + 4{x^3}\left( {\frac{1}{x}} \right) + {x^4}\]

\[ = \frac{1}{{{x^4}}} + 4.\frac{1}{{{x^2}}} + 6 + 4{x^2} + {x^4}\].

Vậy số hạng chứa \[{x^2}\] là: \[4{x^2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {NM}  = \left( {4;\,\, - 3} \right)\); 
B. \(\overrightarrow {NM}  = \left( {2;\,\,1} \right)\);   
C. \(\overrightarrow {NM}  = \left( { - 4;\,3} \right)\);  
D. \(\overrightarrow {NM}  = \left( {2;\,\, - 1} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \[\overrightarrow {NM}  = \left( { - 1 - 3;\,2 - \left( { - 1} \right)} \right) = \left( { - 4;\,\,3} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Đường thẳng \[{d_1}\] có vectơ chỉ phương \[{\vec u_1} = \left( { - 2;\,4} \right)\], lấy \[A\left( {2;\,8} \right) \in {d_1}\]

Đường thẳng \[{d_2}\] có vectơ chỉ phương \[{\vec u_2} = \left( {1;\, - 2} \right)\]

Ta có: \[\frac{1}{{ - 2}} = \frac{{ - 2}}{4}\] nên \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương

Ta lại có: \[A \in {d_2}\]

 Do đó đường thẳng \[{d_1}\] trùng đường thẳng \[{d_2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 1,69;  
B. 1,96;  
C. 1,4;
D. 1,3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{n!}}{{k!}}\];  
B. \[\frac{{n!}}{{k!\left( {n - k} \right)!}}\];   
C. \[\frac{{n!}}{{\left( {n - k} \right)!}}\];  
D. \[k!\left( {n - k} \right)!\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow u  = \left( {2;\,13} \right)\); 
B. \(\overrightarrow u  = \left( {2;\, - 13} \right)\); 
C. \(\overrightarrow u  = \left( { - \,2;\, - 13} \right)\); 
D. \(\overrightarrow u  = \left( { - \,2;\,13} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP