Bạn Hà dự định làm một khung ảnh hình chữ nhật sao cho phần trong của khung là hình chữ nhật có kích thước \(6\;{\rm{cm}} \times 11\;{\rm{cm}}\), độ rộng viền xung quanh là \(x\left( {{\rm{cm}}} \right)\) (tham khảo hình vẽ). Diện tích của viền khung ảnh không vượt quá 38 cm2. Hỏi độ rộng viền khung ảnh lớn nhất là bao nhiêu cm?
Bạn Hà dự định làm một khung ảnh hình chữ nhật sao cho phần trong của khung là hình chữ nhật có kích thước \(6\;{\rm{cm}} \times 11\;{\rm{cm}}\), độ rộng viền xung quanh là \(x\left( {{\rm{cm}}} \right)\) (tham khảo hình vẽ). Diện tích của viền khung ảnh không vượt quá 38 cm2. Hỏi độ rộng viền khung ảnh lớn nhất là bao nhiêu cm?

Quảng cáo
Trả lời:
Đáp án:
Chiều dài khung ảnh hình chữ nhật là \(11 + 2x\) (cm).
Chiều rộng khung ảnh hình chữ nhật là \(6 + 2x\) (cm).
Diện tích khung ảnh là \(\left( {11 + 2x} \right)\left( {6 + 2x} \right)\) (cm2).
Diện tích phần trong của khung ảnh là \(6 \cdot 11 = 66\) (cm2).
Diện tích viền của khung ảnh là \(\left( {11 + 2x} \right)\left( {6 + 2x} \right) - 66\).
Để diện tích viền không vượt quá 38 cm2 thì
\(\left( {11 + 2x} \right)\left( {6 + 2x} \right) - 66 \le 38\)\( \Leftrightarrow 4{x^2} + 34x - 38 \le 0\)\( \Leftrightarrow - \frac{{19}}{2} \le x \le 1\).
Vì \(x > 0\) nên \( \Leftrightarrow 0 < x \le 1\).
Vậy độ rộng của viền khung ảnh lớn nhất là 1 cm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào đồ thị ta có \(f\left( x \right) > 0\)\( \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\). Chọn A.
Câu 2
A. Nếu \(\Delta < 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(b\), với mọi \(x \in \mathbb{R}\).
B. Nếu \(\Delta > 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\), với mọi \(x \in \mathbb{R}\).
C. Nếu \(\Delta = 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\), với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\).
Lời giải
Nếu \(\Delta = 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\), với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\). Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Tam thức bậc hai \(f\left( x \right)\) có \(\Delta > 0\).
b) Tam thức bậc hai \(f\left( x \right)\) có hai nghiệm \(x = 1;x = 3\).
c) Tam thức bậc hai \(f\left( x \right)\) có hệ số \(a > 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Tam thức bậc hai \(f\left( x \right)\) có bảng xét dấu:

b) Bất phương trình \(f\left( x \right) < - 3\) có tập nghiệm là \(S = \left( { - 1;1} \right)\).
c) Phương trình \(\sqrt {f\left( x \right)} = \sqrt {{x^2} - 2x + 4} \) có 2 nghiệm phân biệt thuộc khoảng \(\left( { - 2;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


