PHẦN TỰ LUẬN
Kiểm tra chiều dài của 10 con cá voi xanh trưởng thành được kết quả như sau (đơn vị: mét)
26 25 27 27 33 26 24 26 21 31.
a) Hãy tìm số trung bình, khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn của mẫu số liệu trên.
b) Xác định các giá trị bất thường (nếu có) của mẫu số liệu trên.
PHẦN TỰ LUẬN
Kiểm tra chiều dài của 10 con cá voi xanh trưởng thành được kết quả như sau (đơn vị: mét)
26 25 27 27 33 26 24 26 21 31.
a) Hãy tìm số trung bình, khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn của mẫu số liệu trên.
b) Xác định các giá trị bất thường (nếu có) của mẫu số liệu trên.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
21 24 25 26 26 26 27 27 31 33.
+ Chiều dài trung bình của cá voi xanh trưởng thành là
\(\overline X = \frac{{21 + 24 + 25 + 26 \cdot 3 + 27 \cdot 2 + 31 + 33}}{{10}} = 26,6\).
+ Khoảng biến thiên của mẫu số liệu là \(R = 33 - 21 = 12\).
+ Vì mẫu có 10 số liệu nên trung vị hay tứ phân vị thứ hai là trung bình cộng của số ở vị trí thứ 5 và 6. Do đó, \({Q_2} = \frac{{26 + 26}}{2} = 26\).
Tứ phân vị thứ nhất là trung vị của mẫu: 21 24 25 26 26. Do đó, \({Q_1} = 25\).
Tứ phân vị thứ ba là trung vị của mẫu: 26 27 27 31 33. Do đó, \({Q_3} = 27\).
Khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 27 - 25 = 2\).
+ Phương sai mẫu số liệu là
\({s^2} = \frac{{{{\left( {21 - 26,6} \right)}^2} + {{\left( {24 - 26,6} \right)}^2} + ... + {{\left( {31 - 26,6} \right)}^2}}}{{10}} = 10,24\).
Độ lệch chuẩn của mẫu số liệu là \(s = \sqrt {{s^2}} = \sqrt {10,24} = 3,2\).
b) Ta có: \({Q_1} - 1,5{\Delta _Q} = 25 - 1,5 \cdot 2 = 22\), \({Q_3} + 1,5{\Delta _Q} = 27 + 1,5 \cdot 2 = 30\).
Mẫu số liệu đã cho có các số liệu 21 < 22, 31 > 30, 33 > 30.
Vậy mẫu số liệu có các giá trị bất thường là 21, 31, 33.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).
\( \Rightarrow \overrightarrow {HI} = \frac{3}{2}\overrightarrow {HG} \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).
Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).
Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)
\( \Rightarrow IM:2x - y + 1 = 0\)
\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y = - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).
Lại có: \(\overrightarrow {MA} = 3\overrightarrow {MG} \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\) .
Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).
Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Chọn ra \(3\) người có cả nam và nữ, có cả nhà toán học và vật lý ta có các trường hợp sau:
Trường hợp 1: Chọn được \(1\) nhà vật lý nam, \(2\) nhà toán học nữ có \(C_4^1C_3^2 = 18\) cách chọn.
Trường hợp 2: Chọn được \(1\) nhà vật lý nam, \(1\) nhà toán học nữ và \(1\) nhà toán học nam có \(C_4^1C_3^1C_5^1 = 60\) cách chọn.
Trường hợp 3: Chọn được \(2\) nhà vật lý nam, \(1\) nhà toán học nữ có \(C_4^2C_3^1 = 18\) cách chọn.
Vậy, có \(18 + 60 + 18 = 96\) cách chọn thỏa yêu cầu bài toán.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.