Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(I\left( {2;1} \right)\) và đường thẳng \({d_1}:5x - 12y + 11 = 0\); \({d_2}:x + 2y - 3 = 0\).
a) Đường thẳng \({d_1}\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {5; - 12} \right)\).
b) Đường thẳng \({d_2}\) đi qua điểm \(A\left( {0;3} \right)\).
c) Phương trình tổng quát của đường thẳng \(\Delta \) đi qua \(I\) và song song với đường thẳng \({d_2}\) là \(x + 2y - 4 = 0.\)
Quảng cáo
Trả lời:
a) Đường thẳng \({d_1}\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {5; - 12} \right)\).
b) Thay tọa độ điểm \(A\left( {0;3} \right)\) vào phương trình đường thẳng \({d_2}\) ta thấy không thỏa mãn.
Vậy đường thẳng \({d_2}\) không đi qua điểm \(A\left( {0;3} \right)\).
c) Đường thẳng \(\Delta //{d_2}\) có dạng \(x + 2y + c = 0\).
Mà \(\Delta \) đi qua \(I\left( {2;1} \right)\) nên \(2 + 2 \cdot 1 + c = 0 \Leftrightarrow c = - 4\).
Vậy \(x + 2y - 4 = 0\).
d) \(M \in {d_2}\) nên \(M\left( {3 - 2b;b} \right)\).
Khi đó \(I{M^2} = {\left( {1 - 2b} \right)^2} + {\left( {1 - b} \right)^2} = 1\)\( \Leftrightarrow 5{b^2} - 6b + 1 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}b = 1\\b = \frac{1}{5}\end{array} \right.\).
Vì \(b \ge 1\) nên \(b = 1 \Rightarrow M\left( {1;1} \right)\). Khi đó \(a + b = 2\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(P \in \Delta \) nên \(P\left( {a;a + 2} \right)\). Ta có \(\overrightarrow {PM} = \left( {1 - a; - a - 2} \right);\overrightarrow {PN} = \left( { - 1 - a;1 - a} \right)\).
Do tam giác \(MNP\) vuông tại \(P\) nên \(\overrightarrow {PM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {1 - a} \right)\left( { - 1 - a} \right) + \left( { - a - 2} \right)\left( {1 - a} \right) = 0\)
\( \Leftrightarrow {a^2} - 1 + {a^2} + a - 2 = 0\)\( \Leftrightarrow 2{a^2} + a - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - \frac{3}{2}\end{array} \right.\).
Vì \(a \in \mathbb{Z}\) nên \(a = 1 \Rightarrow b = 3\).
Vậy \(T = 2a + 3b = 11\).
Trả lời: 11.
Câu 2
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.