Câu hỏi:

08/01/2026 14 Lưu

Xét vị trí tương đối của hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 - 3t\\y = 3 + t\end{array} \right.\) và \({d_2}:x + 3y - 10 = 0\).

A. Vuông góc.                                                             

B. Trùng nhau.                 

C. Cắt nhau nhưng không vuông góc.                         
D. Song song.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \({d_1}\) có vectơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( { - 3;1} \right)\) nên \(\overrightarrow {{n_1}}  = \left( {1;3} \right)\) là vectơ pháp tuyến của đường thẳng \({d_1}\).

Đường thẳng \({d_2}\) có vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {1;3} \right)\).

Vì \(\overrightarrow {{n_1}} \) cùng phương với \(\overrightarrow {{n_2}} \) nên hai đường thẳng này song song hoặc trùng nhau.

Lại có \(A\left( {1;3} \right)\) thuộc \({d_1}\) và thuộc \({d_2}\) nên hai đường thẳng này trùng nhau. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( { - 33;25} \right),\overrightarrow {{u_2}}  = \left( { - 30; - 40} \right)\).

Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.

Ta có \(\cos \varphi  = \frac{{\left| {\overrightarrow {{u_1}}  \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}}  \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi  \approx 89,7^\circ \).

Trả lời: 89,7.

Lời giải

Đường thẳng \(\Delta \) vuông góc với đường thẳng \(d\) nên có dạng: \(x + 3y + c = 0\).

Lại có \(d\left( {A,\Delta } \right) = 2\sqrt {10} \) nên \(\frac{{\left| {3 + 3 \cdot 2 + c} \right|}}{{\sqrt {{1^2} + {3^2}} }} = 2\sqrt {10} \)\( \Leftrightarrow \left| {9 + c} \right| = 20\)\( \Leftrightarrow \left[ \begin{array}{l}9 + c = 20\\9 + c =  - 20\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 11\\c =  - 29\end{array} \right.\).

Vì \(a;b;c \in \mathbb{N};a < 2\) nên \(x + 3y + 11 = 0\).

Do đó \(a = 1;b = 3;c = 11\). Vậy \(T = 3 \cdot 1 + 3 + 4 \cdot 11 = 50\).

Trả lời: 50.

Câu 4

a) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {3;4} \right)\).

b) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {3;1} \right)\).

c) Điểm \(A\left( {1;1} \right)\) nằm trên đường thẳng \(d:3x - 4y + 2 = 0\).

d) Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(d\) bằng \(\frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(3\).                             

B. \(\frac{1}{{25}}\).        

C. \(\frac{1}{5}\).             

D. \(\frac{3}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP