Câu hỏi:

09/01/2026 13 Lưu

Trong hệ trục tọa độ \(Oxy\), cho điểm \(M\left( {2;3} \right)\) và hai đường thẳng \(\Delta :3x - 4y + 1 = 0\) và \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y = 3t\end{array} \right.\).

a) Điểm \(M\) thuộc đường thẳng \(d\).

Đúng
Sai

b) Hai đường thẳng \(d\) và \(\Delta \) song song với nhau.

Đúng
Sai

c) Đường thẳng đi qua \(M\) và vuông góc với đường thẳng \(\Delta \) có phương trình \(4x + 3y + 17 = 0\).

Đúng
Sai
d) Khoảng cách giữa hai đường thẳng \(d\) và \(\Delta \) bằng \(\frac{7}{5}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Thay tọa độ điểm \(M\) vào phương trình đường thẳng \(d\) ta thấy không thỏa mãn.

Vậy điểm \(M\) không thuộc đường thẳng \(d\).

b) Đường thẳng \(\Delta \) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {3; - 4} \right)\).

Đường thẳng \(d\) có một vectơ chỉ phương \(\overrightarrow u  = \left( {4;3} \right)\) nên nhận \(\overrightarrow {{n_2}}  = \left( {3; - 4} \right)\) làm vectơ pháp tuyến.

Ta có \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) cùng phương và điểm \(A\left( {2;0} \right)\) thuộc \(d\) nhưng không thuộc \(\Delta \).

Do đó hai đường thẳng \(d\) và \(\Delta \) song song với nhau.

c) Đường thẳng đi qua \(M\) và vuông góc với đường thẳng \(\Delta \) có vectơ pháp tuyến là \(\left( {4;3} \right)\) có dạng \(4\left( {x - 2} \right) + 3\left( {y - 3} \right) = 0\) hay \(4x + 3y - 17 = 0\).

d) Ta có \(d\left( {d,\Delta } \right) = d\left( {A,\Delta } \right) = \frac{{\left| {3 \cdot 2 - 4 \cdot 0 + 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = \frac{7}{5}\).

Đáp án: a) Sai;     b) Đúng;   c) Sai;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x + 2y - 3 = 0\).          
B. \(x - 2y + 5 = 0\).          
C. \(x + 2y = 0\).               
D. \(x + 2y - 5 = 0\).

Lời giải

 

     

Lời giải

Đường thẳng \(d\) vuông góc với đường thẳng \(\Delta \) có dạng \(x + 2y + c = 0\).

Vì \(d\) đi qua điểm \(A\left( {1;2} \right)\) nên \(1 + 2 \cdot 2 + c = 0 \Rightarrow c =  - 5\).

Vậy \(d:x + 2y - 5 = 0\). Chọn D.

Câu 2

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).

c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).

Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).

d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {0;1} \right)\).

Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}}  \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Đúng.

Câu 4

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(135^\circ \).               
B. \(90^\circ \).                 
C. \(45^\circ \).                 
D. \(60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(8\).                              
B. \(4\).                              
C. \(2\).                              
D. \(16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP