Trong mặt phẳng tọa độ \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có hai tiêu điểm là \({F_1},{F_2}\).
a) Tiêu cự của \(\left( E \right)\) là 8.
b) Điểm \(F\left( { - 5;0} \right)\) trùng với một tiêu điểm của \(\left( E \right)\).
c) Điểm \(K\left( {3;0} \right)\) thuộc \(\left( E \right)\).
Quảng cáo
Trả lời:
a) Có \({a^2} = 25;{b^2} = 9 \Rightarrow {c^2} = {a^2} - {b^2} = 25 - 9 = 16 \Rightarrow c = 4\).
Tiêu cự là \(2c = 8\).
b) Tiêu điểm \({F_1}\left( { - 4;0} \right),{F_2}\left( {4;0} \right)\).
c) Thay tọa độ điểm \(K\left( {3;0} \right)\) vào phương trình \(\left( E \right)\) ta thấy không thỏa mãn.
Do đó \(K\left( {3;0} \right)\) không thuộc \(\left( E \right)\).
d) Có \(\left( H \right):\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) có các tiêu điểm trùng với các tiêu điểm của \(\left( E \right)\) nên \({A^2} + {B^2} = 16\).
Lại có \(\left( H \right)\) đi qua điểm \(N\left( {\sqrt {15} ;1} \right)\) nên \(\frac{{15}}{{{A^2}}} - \frac{1}{{{B^2}}} = 1 \Rightarrow 15{B^2} - {A^2} = {A^2}{B^2}\)\( \Rightarrow 240 - 16{A^2} = {A^2}\left( {16 - {A^2}} \right)\)\[ \Rightarrow {A^4} - 32{A^2} + 240 = 0 \Rightarrow \left[ \begin{array}{l}{A^2} = 12\left( {TM} \right)\\{A^2} = 20\left( {KTM} \right)\end{array} \right.\].
Với \({A^2} = 12 \Rightarrow A = 2\sqrt 3 \).
Suy ra \(\left| {M{F_1} - M{F_2}} \right| = 4\sqrt 3 \).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Đường thẳng \(d\) vuông góc với đường thẳng \(\Delta \) có dạng \(x + 2y + c = 0\).
Vì \(d\) đi qua điểm \(A\left( {1;2} \right)\) nên \(1 + 2 \cdot 2 + c = 0 \Rightarrow c = - 5\).
Vậy \(d:x + 2y - 5 = 0\). Chọn D.
Câu 2
a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n = \left( {1; - 1} \right)\).
b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).
c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.
Lời giải
a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n = \left( {1; - 1} \right)\).
b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).
c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).
Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).
d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {0;1} \right)\).
Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
