Câu hỏi:

22/01/2026 38 Lưu

Cho \[\Delta ABC\] vuông tại \[A\,\,\left( {AB < AC} \right)\] và các điểm \[M \in AC,\,\,H \in BC\] sao cho \[MH \bot BC\]\[MH = HB.\] Kẻ \[HD \bot AB\,\,\left( {D \in AB} \right),\,\,HE \bot AC\,\,\left( {E \in AC} \right)\].
Cho \[\Delta ABC\] vuông tại \A, ( {AB < AC} và các điểm (ảnh 1)

Khi đó:

a) \[\Delta DBH = \Delta EMH.\]

Đúng
Sai

b) \[HE = HD.\]

 

Đúng
Sai

c) \[\Delta DAH = \Delta HAE\].

Đúng
Sai
  d) \[AH\] là phân giác của \[\widehat {BAC}\].
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Xét \[\Delta DBH\]\[\Delta EMH\] có:

\[MH = HB\] (gt)

\[\widehat {DBH} = \widehat {HME}\] (cùng phụ với \[\widehat {BCA}\])

Do đó, \[\Delta DBH = \Delta EMH\] (cạnh góc vuông – góc nhọn).

b) Đúng.

\[\Delta DBH = \Delta EMH\] (cmt) nên \[HE = HD\] (hai cạnh tương ứng)

c) Sai.

Xét \[\Delta DAH\]\[\Delta HAE\] có:

\[DH = HE\] (cmt)

\[AH\] chung (gt)

Do đó, \[\Delta DAH = \Delta EAH\] (cạnh huyền – cạnh góc vuông)

d) Đúng.

\[\Delta DAH = \Delta EAH\] (cmt) nên \[\widehat {DAH} = \widehat {EAH}\] (hai góc tương ứng)

Hay \[\widehat {BAH} = \widehat {CAH}\].

Mà tia \[AH\] nằm trong \[\widehat {BAC}\].

Suy ra \[AH\] là phân giác của \[\widehat {BAC}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \[\Delta BIM\]\[\Delta CKM\] có:

\[MB = MC\] (\[M\] là trung điểm của \[BC\])

\[\widehat {BIM} = \widehat {CKM} = 90^\circ \].

\[\widehat {IMB} = \widehat {KMC}\] (đối đỉnh).

Do đó, \[\Delta BIM = \Delta CKM\] (cạnh huyền – góc nhọn)

Từ đó suy ra \[BI = CK\] (hai cạnh tương ứng).

\[KC = 4\,\,{\rm{cm}}{\rm{.}}\]

Do đó, \[BI = 4\,\,{\rm{cm}}{\rm{.}}\]

Lời giải

a) Đúng.

Nhận thấy, \[\widehat {ABM},\,\,\widehat {ACN}\] lần lượt kề bù với \[\widehat {ABC},\,\,\widehat {ACB}\].

Do đó, ta có: \[\widehat {ABM} = 180^\circ - \widehat {ABC},\,\,\widehat {ACN} = 180^\circ - \widehat {ACB}\].

Từ đó, suy ra \[\widehat {ABM} = \,\,\widehat {ACN}\].

b) Đúng.

Xét \[\Delta ABI\]\[\Delta ACI\], có:

\[\widehat {ABI} = \widehat {ACI}\] (gt)

\[AI\] chung (gt)

Suy ra \[\Delta ABI = \Delta ACI\] (cạnh góc vuông – góc nhọn)

c) Sai.

Xét \[\Delta ABM\]\[\Delta ACN\], có:

\[MB = NC\] (gt)

\[\widehat {MBA} = \widehat {NCA}\] (cmt)

\[AB = AC\,\,\left( {\Delta ABI = \Delta ACI} \right)\]

Do đó, \[\Delta ABM = \Delta ACN\] (c.g.c)

d) Đúng.

\[\Delta ABM = \Delta ACN\] (cmt) nên \[\widehat {AMB} = \widehat {CNA}\] (hai góc tương ứng) hay \[\widehat {EMB} = \widehat {CNF}\].

Xét \[\Delta BME\]\[\Delta CNF\] có:

\[MB = CN\] (gt)

\[\widehat {EMB} = \widehat {FNC}\] (cmt)

Do đó, \[\Delta BME = \Delta CNF\] (cạnh huyền – góc nhọn)

Câu 3

a) \[\widehat {ACB} = 60^\circ \].

Đúng
Sai

b) \[\Delta ABE = \Delta EBH.\]

Đúng
Sai

c) \[BE\] là phân giác của \[\widehat B\].

Đúng
Sai
d) \[BE\] vuông góc với \[KC.\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \[\Delta MAE = \Delta MFA.\]

Đúng
Sai

b) \[\Delta MEB = \Delta MCF\].

Đúng
Sai

c) \[AB = AC\].

Đúng
Sai
d) \[\Delta ABM = \Delta ACM.\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP