Câu hỏi:

02/02/2026 44 Lưu

Trong các điểm \(A\left( { - 1\,{\rm{;}}\,3} \right)\), \(B\left( {{\rm{1}}\,{\rm{;}}\, - 3} \right)\), \(C\left( {\frac{1}{2}\,{\rm{;}}\,\frac{{ - 3}}{2}} \right)\)\(D\left( {\frac{1}{3}\,{\rm{;}}\,\frac{{ - 1}}{3}} \right)\), điểm nào thuộc đồ thị hàm số \(y = - 3{x^2}\)?

A. Điểm \(B\)\(C\).                              
B. Điểm \[C\]\(D\).            
C. Điểm \[A\]\(B\).                          
D. Điểm \(B\)\(D\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

*Xét điểm \(A\left( { - 1\,{\rm{;}}\,3} \right)\)

Thay \(x =  - 1\) vào công thức \(y =  - 3{x^2}\) ta được \(y =  - 3.{\left( { - 1} \right)^2} =  - 3 \ne 3\)

Vậy điểm \(A\) không thuộc đồ thị hàm số.

Tương tự:

Điểm \(B\left( {{\rm{1}}\,{\rm{;}}\, - 3} \right)\) có \( - {3.1^2} =  - 3\) nên điểm \(B\) thuộc đồ thị hàm số.

Điểm \(C\left( {\frac{1}{2}\,{\rm{;}}\,\frac{{ - 3}}{2}} \right)\) có \( - 3.{\left( {\frac{1}{2}} \right)^2} = \frac{{ - 3}}{4} \ne \frac{{ - 3}}{2}\) nên điểm \(C\) không thuộc đồ thị hàm số.

Điểm \(D\left( {\frac{1}{3}\,{\rm{;}}\,\frac{{ - 1}}{3}} \right)\) có \( - 3.{\left( {\frac{1}{3}} \right)^2} = \frac{{ - 1}}{3}\) nên điểm \(D\) thuộc đồ thị hàm số.

Vậy các điểm thuộc đồ thị hàm số là điểm \[B\] và \(D\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {\sqrt 3 ;\, - 6} \right);\,\,\left( { - \sqrt 3 ;\, - 6} \right).\)             
B. \(\left( { - 6;\,\sqrt 3 } \right);\,\,\left( { - 6;\, - \sqrt 3 } \right).\)
C. \(\left( {\sqrt 3 ;\, - 6} \right).\)                                                     
D. \(\left( { - 72; - 6} \right).\)

Lời giải

Chọn A

Điểm thuộc \(\left( P \right)\) có tung độ bằng \( - 6\) thì hoành độ \(x\) thỏa mãn phương trình \( - 6 =  - 2{x^2}\) nên \({x^2} = 3.\)

Do đó \(x = 3\) hoặc \(x =  - 3.\)

Vậy tọa độ các điểm cần tìm là \(\left( {\sqrt 3 ;\, - 6} \right);\,\,\left( { - \sqrt 3 ;\, - 6} \right).\)

Câu 2

A. Parobol \(y = \frac{1}{2}{x^2}\).                                    
B. Đường thẳng \(y = \frac{1}{4}x\).
C. Đường thẳng \(y = \frac{1}{2}x\).       
D. Parabol \(y = \frac{1}{4}{x^2}\).

Lời giải

Chọn D

Thay \(y = 4\)vào \(y = 2{x^2}\)ta đ (ảnh 1)

Gọi tọa độ của điểm \(M\) là \(\left( {x;y} \right)\).

Đường thẳng \(d\) đi qua điểm \(\left( {0; - 1} \right)\) và song song với trục \(Ox\)có dạng \(\left( d \right):y + 1 = 0\).

Khoảng cách từ \(M\) đến \(A\) là \(MA = \sqrt {{{\left( {0 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}} \)\( = \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} \)

Khoảng cách từ \(M\) đến đường thẳng \(d\) là \(\frac{{\left| {y + 1} \right|}}{{\sqrt {{1^2}} }} = \left| {y + 1} \right|\)

Để khoảng cách từ \(M\) đến \(A\) bằng khoảng cách từ \(M\) đến đường thẳng \(d\) thì \(\sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}  = \left| {y + 1} \right|\)\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {\left( {y + 1} \right)^2}\)\( \Leftrightarrow {x^2} + {y^2} - 2y + 1 = {y^2} + 2y + 1\)\( \Leftrightarrow 4y = {x^2}\)\( \Leftrightarrow y = \frac{1}{4}{x^2}\).

Vậy tập hợp các điểm \(M\)là một parabol có phương trình \(y = \frac{1}{4}{x^2}\).

Câu 3

Biết rằng đồ thị hàm số \[y = a{x^2}\left( {a \ne 0} \right)\] đi qua điểm \[M\left( {\frac{1}{2}\,;\,\frac{{ - 1}}{2}} \right)\]. Giá trị của \[a\]

A. \(1\).                      
B. \( - 1\).                 
C. \(2\).                           
D. \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - \sqrt 3 \,;\, - 3} \right)\).      
B. \(\left( {\sqrt 3 \,;\, - 3} \right)\).                          
C. \(\left( { - 3\,;\, - 9} \right)\).    
D. \(\left( { - 3\,;\,9} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 4;\,\, - 4} \right);\,\,\left( { - 2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
B. \(\left( { - 4;\,\,4} \right);\,\,\left( { - 2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
C. \(\left( { - 4;\,\, - 4} \right);\,\,\left( { - 2;\,\,1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
D. \(\left( { - 4;\,\, - 4} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\,1} \right);\,\,\left( {4;\,\, - 4} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {2;\,4} \right)\).                         
B. \(\left( { - 2;\, - 4} \right)\).       
C. \(\left( {\frac{1}{4};\,\frac{1}{2}} \right)\).        
D. \(\left( {\frac{{ - 1}}{2};\,\frac{{ - 1}}{4}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - 1\,;\, - 3} \right).\)                
B. \[\left( {4\,;\,\,12} \right).\]  
C. \(\left( { - 2\,;\,\, - 6} \right).\)                                  
D. \(\left( {1\,;\,\,3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP