Câu hỏi:

28/01/2026 3 Lưu

Trong các điểm \(A\left( { - 1\,{\rm{;}}\,3} \right)\), \(B\left( {{\rm{1}}\,{\rm{;}}\, - 3} \right)\), \(C\left( {\frac{1}{2}\,{\rm{;}}\,\frac{{ - 3}}{2}} \right)\)\(D\left( {\frac{1}{3}\,{\rm{;}}\,\frac{{ - 1}}{3}} \right)\), điểm nào thuộc đồ thị hàm số \(y = - 3{x^2}\)?

A. Điểm \(B\)\(C\).                              
B. Điểm \[C\]\(D\).            
C. Điểm \[A\]\(B\).                          
D. Điểm \(B\)\(D\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

*Xét điểm \(A\left( { - 1\,{\rm{;}}\,3} \right)\)

Thay \(x =  - 1\) vào công thức \(y =  - 3{x^2}\) ta được \(y =  - 3.{\left( { - 1} \right)^2} =  - 3 \ne 3\)

Vậy điểm \(A\) không thuộc đồ thị hàm số.

Tương tự:

Điểm \(B\left( {{\rm{1}}\,{\rm{;}}\, - 3} \right)\) có \( - {3.1^2} =  - 3\) nên điểm \(B\) thuộc đồ thị hàm số.

Điểm \(C\left( {\frac{1}{2}\,{\rm{;}}\,\frac{{ - 3}}{2}} \right)\) có \( - 3.{\left( {\frac{1}{2}} \right)^2} = \frac{{ - 3}}{4} \ne \frac{{ - 3}}{2}\) nên điểm \(C\) không thuộc đồ thị hàm số.

Điểm \(D\left( {\frac{1}{3}\,{\rm{;}}\,\frac{{ - 1}}{3}} \right)\) có \( - 3.{\left( {\frac{1}{3}} \right)^2} = \frac{{ - 1}}{3}\) nên điểm \(D\) thuộc đồ thị hàm số.

Vậy các điểm thuộc đồ thị hàm số là điểm \[B\] và \(D\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {2;\,4} \right)\).                         
B. \(\left( { - 2;\, - 4} \right)\).       
C. \(\left( {\frac{1}{4};\,\frac{1}{2}} \right)\).        
D. \(\left( {\frac{{ - 1}}{2};\,\frac{{ - 1}}{4}} \right)\).

Lời giải

Chọn B

Gọi điểm cần tìm là \[A\left( {a\,;\,2a} \right)\,\left( {a \ne 0} \right)\].

Do điểm \[A\] thuộc parabol \[y =  - {x^2}\] nên

\[2a =  - {a^2}\]\[ \Leftrightarrow {a^2} + 2a = 0\]\[ \Leftrightarrow a\left( {a + 2} \right) = 0\]\[ \Leftrightarrow a =  - 2\] (vì \[a \ne 0\]).

Vậy điểm cần tìm có tọa độ là \(\left( { - 2;\, - 4} \right)\).

Câu 2

A. \(y = 2{x^2}\).      
B. \(y = 2{x^2}\,\left( {x > 0} \right)\).                    
C. \(y = \frac{1}{2}{x^2}\).   
D. \(y = \frac{1}{2}{x^2}\,\left( {x > 0} \right)\).

Lời giải

Chọn D

Tứ giác có hai đường chéo vuông góc với nhau thì diện tích sẽ bằng nửa tích hai đường chéo.

Do vậy \(y = \frac{1}{2}{x^2}\,\left( {x > 0} \right)\) (vì độ dài đường chéo tứ giác là số dương).

Câu 3

A. \( - \sqrt 2 < m < \sqrt 2 \).                 
B. \(m < \sqrt 2 \).                   
C. \(m < - \sqrt 2 \) hoặc \(m > \sqrt 2 \).                   
D. \(m > \sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\sqrt 2 \).            
B. \(4\sqrt 2 \).        
C. \(2\sqrt 2 \).                              
D. \(8\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Parobol \(y = \frac{1}{2}{x^2}\).                                    
B. Đường thẳng \(y = \frac{1}{4}x\).
C. Đường thẳng \(y = \frac{1}{2}x\).       
D. Parabol \(y = \frac{1}{4}{x^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Đường thẳng \(y = x\).                                                             
B. Parobol \(y = \frac{1}{2}{x^2}\).
C. Parobol \(y = 2{x^2}\).                                                    
D. Đường thẳng \(y = - 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Biết rằng đồ thị hàm số \[y = a{x^2}\left( {a \ne 0} \right)\] đi qua điểm \[M\left( {\frac{1}{2}\,;\,\frac{{ - 1}}{2}} \right)\]. Giá trị của \[a\]

A. \(1\).                      
B. \( - 1\).                 
C. \(2\).                           
D. \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP