Câu hỏi:

28/01/2026 17 Lưu

Cho hàm số \({\rm{y}} =  - \frac{1}{2}{{\rm{x}}^2}\).

a) Vẽ đồ thị \(({\rm{P}})\) của hàm số đã cho.

b) Trên \(({\rm{P}})\) lấy hai điểm \({\rm{A}},{\rm{B}}\) có hoành độ lần lượt -2 và 1. Viết phương trình đường thẳng AB.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Bảng giá trị:

\(x\)

\( - 2\)

\( - 1\)

0

1

2

\(y =  - \frac{1}{2}{x^2}\)

\( - 2\)

\( - \frac{1}{2}\)

0

\( - \frac{1}{2}\)

\( - 2\)

Đồ thị \(({\rm{P}})\) là một parabol có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} =  (ảnh 1)

b) Đặt A(-2; \(\left. {{{\rm{y}}_0}} \right) \in ({\rm{P}})\)\( \Rightarrow {{\rm{y}}_0} = \left( { - \frac{1}{2}} \right){( - 2)^2} \Rightarrow {{\rm{y}}_0} =  - 2\)

Vậy \({\rm{A}}( - 2; - 2)\).

Đặt \(B\left( {1;{y_1}} \right) \in (P) \Rightarrow {y_1} = \left( { - \frac{1}{2}} \right) \cdot {(1)^2} \Rightarrow {y_1} =  - \frac{1}{2}\). Vậy \(B\left( {1; - \frac{1}{2}} \right)\)

Đường thẳng AB có phương trình \({\rm{y}} = {\rm{ax}} + {\rm{b}}({\rm{d}})\).

\(A \in (d) \Rightarrow  - 2 =  - 2a + b;B \in (d) \Rightarrow  - \frac{1}{2} = a + b\)

Ta có hệ phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{ - 2a + b =  - 2}\\{a + b =  - \frac{1}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2a - b = 2}\\{a + b =  - \frac{1}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{1}{2}}\\{a + b =  - \frac{1}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{1}{2}}\\{b =  - 1}\end{array}} \right.} \right.} \right.} \right.\)

Vậy phương trình đường thẳng AB có dạng: \({\rm{y}} = \frac{1}{2}{\rm{x}} - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(a = 1;b =  - 2\;m \Rightarrow \;b' =  - m;c = 2\;m - 3\). Phương trình đã cho có nghiệm \({x_1},{x_2}\) khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{{{\left( { - m} \right)}^2} - \left( {2m - 3} \right) \ge 0}\end{array}} \right.} \right.\)

\( \Leftrightarrow {m^2} - 2m + 3 \ge 0 \Leftrightarrow {m^2} - 2m + 1 + 2 \ge 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 2 \ge 0\) (luôn đúng với mọi \(m\) vì \({\left( {m - 1} \right)^2} \ge 0,\forall m\)) Vậy \(A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{m^2} - 2\left( {2m - 3} \right) = 4{m^2} - 4m + 6 = \left( {4{m^2} - 4m + 1} \right) + 5n\)

\( = {(2m - 1)^2} + 5 \ge 5;\forall m\left( {{{(2m - 1)}^2} \ge 0,\forall m} \right)\)

Dấu “=” xảy ra khi và chỉ khi \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)

Chú ý: Nếu ta không đặt điều kiện phương trình có nghiệm thì vẫn đúng đáp số, nhưng lời giải như vậy chưa chính xác.

Lời giải

Ta có 6 giờ 45 phút= \(\frac{{27}}{4}\)giờ.

Gọi vận tốc của tàu thủy khi nước yên lặng là \[x\,({\rm{km}}\,{\rm{/}}\,{\rm{h}},x > 4)\]

Suy ra vận tốc của tàu thủy khi xuôi dòng là \(x + 4\,(\;{\rm{km}}/{\rm{h}})\).

Vận tốc của tàu thủy khi ngược dòng là \(x - 4\,(\;{\rm{km}}/{\rm{h}})\).

Thời gian tàu thủy đi xuôi dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x + 4}}\) (giờ).

Thời gian tàu thủy đi ngược dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x - 4}}\) (giờ).

Theo đề Câu, thời gian cả đi lẫn về mất \(\frac{{27}}{4}\) giờ. Ta có phương trình

\(\frac{{120}}{{x + 4}} + \frac{{120}}{{x - 4}} = \frac{{27}}{4} \Leftrightarrow 9{x^2} - 320x - 144 = 0.\)

Ta có \(\Delta  = {320^2} - 4 \cdot 9 \cdot ( - 144) = 107584 > 0\) nên phương trình có nghiệm \({x_1} =  - \frac{4}{9}\) (loại); \({x_2} = 36\) (nhận).

Vậy vận tốc tàu thủy khi nước yên lặng là \(36\;{\rm{km}}/{\rm{h}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP