Câu hỏi:

03/02/2026 113 Lưu

Một tổ có kế hoạch sản xuất 350 sản phẩm theo năng suất dự định. Nếu năng suất tăng lên 10 sản phẩm thì tổ đó hoàn thành sớm 2 ngày so với giảm năng suất 10 sản phẩm mỗi ngày. Tính năng suất dự kiến.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi năng suất dự kiến là \(x\) (sản phẩm/ngày; \(x \in \mathbb{N}\) ).

Nếu tăng năng suất lên 10 sản phẩm thì số ngày hoàn thành 350 sản phẩm là \(\frac{{350}}{{x + 10}}\) (ngày).

Nếu giảm năng suất 10 sản phẩm thì số ngày hoàn thành 350 sản phẩm là \(\frac{{350}}{{x - 10}}\) (ngày).

Theo đề Câu, ta có phương trình

\(\frac{{350}}{{x - 10}} - \frac{{350}}{{x + 10}} = 2 \Leftrightarrow {x^2} = 3600 \Leftrightarrow x =  \pm 60\)

So với điều kiện, vậy năng suất dự kiến là 60 (sản phẩm/ngày)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).

Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)

\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} =  - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).

b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).

Bảng giá trị:

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 1)

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 2)

Lời giải

Ta có: \(a = 3;b =  - 7;c =  - 4 \Rightarrow a.c =  - 12 < 0\). Vậy phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\).

Theo định lí Viète, ta có: \({x_1} + {x_2} = \frac{7}{3};{x_1}{x_2} = \frac{{ - 4}}{3}\).

a) Ta có: \({A^2} = {\left| {{x_1} - {x_2}} \right|^2} = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {\left( {\frac{7}{3}} \right)^2} - 4.\left( {\frac{{ - 4}}{3}} \right) = \frac{{97}}{9} \Rightarrow A = \frac{{\sqrt {97} }}{3}\)

b) Ta có \(B = \frac{{x_1^3 + x_2^3}}{{{x_1}{x_2}}} = \frac{{{{\left( {{x_1} + {x_2}} \right)}^3} - 3{x_1}{x_2}.\left( {{x_1} + {x_2}} \right)}}{{{x_1}{x_2}}} = \frac{{{{\left( {\frac{7}{3}} \right)}^3} - 3.\left( {\frac{{ - 4}}{3}} \right).\frac{7}{3}}}{{\frac{{ - 4}}{3}}} =  - \frac{{595}}{{36}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP