Giả sử Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m, điểm cao nhất trên cổng cách mặt đất 185,6m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất). Hỏi vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn bao nhiêu mét? (làm tròn đến cm )

Giả sử Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m, điểm cao nhất trên cổng cách mặt đất 185,6m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất). Hỏi vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn bao nhiêu mét? (làm tròn đến cm )

Quảng cáo
Trả lời:
Cái cổng có hình dạng là một parabol có phương trình dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{OA}} = \frac{{{\rm{AB}}}}{2} = \frac{{162}}{2} = 81\;{\rm{m}}\) \( \Rightarrow {\rm{A}}(81; - 185,6) \in (P):y = a{x^2} \Rightarrow - 185,6 = a{.81^2} \Rightarrow a = \frac{{ - 185,6}}{{{{81}^2}}} = \frac{{ - 185}}{{6561}}\)
\((P):y = \frac{{ - 185}}{{6561}}{x^2}\)
\({\rm{HM}} = {\rm{EH}} - {\rm{ME}} = 185,6 - 43 = 142,6\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_{\rm{M}}}; - 142,6} \right) \in (P):y = \frac{{ - 185}}{{6561}}{x^2} \Rightarrow - 142,6 = \frac{{ - 185}}{{6561}}x_{\rm{M}}^2\)
\( \Rightarrow {x_{\rm{M}}}^2 = \frac{{ - 142,6.6561}}{{ - 185}} = \frac{{4677993}}{{925}} \Rightarrow {x_{\rm{M}}} = \sqrt {\frac{{4677993}}{{925}}} \approx 71,11\;{\rm{m}}\)
\( \Rightarrow {\rm{OE}} = 71,11\;{\rm{m}} \Rightarrow {\rm{EA}} = {\rm{OA}} - {\rm{OE}} = 81 - 71,11 = 9,89\;{\rm{m}}.\)
Vậy vị trí chạm đất của đầu sợi dây này cách chân cổng \(A\) một khoảng là \(9,89\;{\rm{m}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(a = 1;b = - 2\;m \Rightarrow \;b' = - m;c = 2\;m - 3\). Phương trình đã cho có nghiệm \({x_1},{x_2}\) khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{{{\left( { - m} \right)}^2} - \left( {2m - 3} \right) \ge 0}\end{array}} \right.} \right.\)
\( \Leftrightarrow {m^2} - 2m + 3 \ge 0 \Leftrightarrow {m^2} - 2m + 1 + 2 \ge 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 2 \ge 0\) (luôn đúng với mọi \(m\) vì \({\left( {m - 1} \right)^2} \ge 0,\forall m\)) Vậy \(A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{m^2} - 2\left( {2m - 3} \right) = 4{m^2} - 4m + 6 = \left( {4{m^2} - 4m + 1} \right) + 5n\)
\( = {(2m - 1)^2} + 5 \ge 5;\forall m\left( {{{(2m - 1)}^2} \ge 0,\forall m} \right)\)
Dấu “=” xảy ra khi và chỉ khi \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)
Chú ý: Nếu ta không đặt điều kiện phương trình có nghiệm thì vẫn đúng đáp số, nhưng lời giải như vậy chưa chính xác.
Lời giải
Ta có 6 giờ 45 phút= \(\frac{{27}}{4}\)giờ.
Gọi vận tốc của tàu thủy khi nước yên lặng là \[x\,({\rm{km}}\,{\rm{/}}\,{\rm{h}},x > 4)\]
Suy ra vận tốc của tàu thủy khi xuôi dòng là \(x + 4\,(\;{\rm{km}}/{\rm{h}})\).
Vận tốc của tàu thủy khi ngược dòng là \(x - 4\,(\;{\rm{km}}/{\rm{h}})\).
Thời gian tàu thủy đi xuôi dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x + 4}}\) (giờ).
Thời gian tàu thủy đi ngược dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x - 4}}\) (giờ).
Theo đề Câu, thời gian cả đi lẫn về mất \(\frac{{27}}{4}\) giờ. Ta có phương trình
\(\frac{{120}}{{x + 4}} + \frac{{120}}{{x - 4}} = \frac{{27}}{4} \Leftrightarrow 9{x^2} - 320x - 144 = 0.\)
Ta có \(\Delta = {320^2} - 4 \cdot 9 \cdot ( - 144) = 107584 > 0\) nên phương trình có nghiệm \({x_1} = - \frac{4}{9}\) (loại); \({x_2} = 36\) (nhận).
Vậy vận tốc tàu thủy khi nước yên lặng là \(36\;{\rm{km}}/{\rm{h}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.