Câu hỏi:

29/01/2026 5 Lưu

Cho \[\Delta ABC\] vuông tại \[A\], \(\widehat {BAC} = 90^\circ \,\,\left( {AB{\rm{ }} \le {\rm{ }}AC} \right)\). Đường tròn \[\left( I \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[BC\] tại \[D\]. Kết quả nào sau đây là đúng?

A. \(BD = \frac{{BC + AB - AC}}{2}\).  
B. \(BC = \frac{{BD + AB - AC}}{2}\).
C. \(BD = \frac{{BC + AB + AC}}{2}\). 
D. \(BD = \frac{{BC - AB + AC}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có: \[A{B^2} + A{C^2 (ảnh 1)

Gọi \[E,{\rm{ }}F\] là tiếp điểm của đường tròn \[\left( I \right)\] với các cạnh \[AB,{\rm{ }}AC\].

Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \[AE = AF;{\rm{ }}BE = BD;\,\,CD = CF\].

Do đó 2BD=BD+BE =BCCD+ABAE

=BC+ABCD+AE =BC+ABCF+AF

=BC+ABAC

Suy ra \[BD = \frac{{BC + AB - AC}}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2,5 cm.                  
B. \[1,5{\rm{ }}{\mathop{\rm cm}\nolimits} .\]       
C. 2 cm.                   
D. \(\sqrt 3 {\rm{ cm}}\).

Lời giải

Chọn A

Tam giác \[ABC\] vuông tại \[A\] có (ảnh 1)

Tam giác \[ABC\] vuông tại \[A\] có đường cao \[AH\] nên \(AB \cdot AC = A{H^2}\).

Mặt khác \(\frac{{AB}}{{AC}} = \frac{3}{4}\) hay \(AB = \frac{3}{4}AC\). Thế vào biểu thức trên ta được:

\(\frac{3}{4}A{C^2} = {\left( {\frac{{12}}{5}} \right)^2}\) hay \(AC = \frac{{8\sqrt 3 }}{5}\,\,\left( {{\rm{cm}}} \right)\).

Suy ra \[AB = \frac{3}{4} \cdot \frac{{8\sqrt 3 }}{5} = \frac{{6\sqrt 3 }}{5}\,\,\left( {{\rm{cm}}} \right)\].

Áp dụng định lý Pythagore vào tam giác \[ABC\] vuông tại \[A\] ta có: \(B{C^2} = A{B^2} + A{C^2}\)

Do đó \(BC = \sqrt {A{B^2} + A{C^2}}  = 2\sqrt 3 \,\,\left( {{\rm{cm}}} \right)\)

Tâm đường tròn ngoại tiếp tam giác \[ABC\] là trung điểm O của cạnh huyền \[BC\].

Vậy bán kính đường tròn ngoại tiếp tam giác \[ABC\] là \(R = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \) (cm).

Câu 2

A. \(\frac{R}{{\sqrt 3 }}\).                        
B. \(R\sqrt 3 \).                               
C. \(R\sqrt 6 \).        
D. \(3R\).

Lời giải

Chọn B

i tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\] (ảnh 1)

Gọi tam giác đều \[ABC\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\]

Khi đó \[O\] là trọng tâm tam giác \[ABC\].

Gọi \[AH\] là đường trung tuyến.

Suy ra \(R = AO = \frac{2}{3}AH\) hay \(AH = \frac{{3R}}{2}\).

Áp dụng định lý Pythagore với tam giác \[ABH\] vuông tại \[H\], ta có: \(A{H^2} = A{B^2} - B{H^2}\)

Khi đó \[AH = \sqrt {A{B^2} - B{H^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\].

Do đó \(\frac{{3R}}{2} = \frac{{a\sqrt 3 }}{2}\) hay \(a = R\sqrt 3 \).

Câu 3

A. \(6\,\,{\rm{c}}{{\rm{m}}^2}\).            
B. \(6\sqrt 3 \,\,{\rm{c}}{{\rm{m}}^2}\).                     
C. \(3\,\,{\rm{c}}{{\rm{m}}^2}\).                
D. \(3\sqrt 3 \,\,{\rm{c}}{{\rm{m}}^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 3 cm.                     
B. 5 cm.                   
C. 7 cm.                             
D. 9 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. trung trực.             
B. đường cao.          
C. phân giác ngoài.                         
D. phân giác trong.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Mỗi tam giác luôn có một đường tròn ngoại tiếp.
B. Mỗi tam giác luôn có một đường tròn nội tiếp.
C. Cả A và B đều đúng.
D. Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 26 cm.                   
B. 13 cm.                 
C. \(\frac{{13}}{2}\,\,{\rm{cm}}\).               
D. 6 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP