Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là
Quảng cáo
Trả lời:
Chọn B
![Tứ giác \[ABCD\] nội tiếp (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/9-1769712956.png)
Tứ giác \[ABCD\] nội tiếp nên ta có:
\(\widehat {DAB} + \widehat {BCD} = 180^\circ \) nên \(\widehat {BCD} = 180^\circ - 70^\circ = 110^\circ \).
Mà \(\widehat {BCD} + \widehat {BCM} = 180^\circ \) (hai góc kề bù)
Do đó \(\widehat {BCM} = 180^\circ - 110^\circ = 70^\circ \).
Vậy \(\widehat {BCM} = 70^\circ \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
![Góc \[AOB\] và \[ACB\] lần lượt là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/5-1769712794.png)
Vì \[\widehat {AOB}\] và \[\widehat {ADB}\] lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung \[AB\] của \[\left( O \right)\].
Do đó \(\widehat {ADB} = \frac{1}{2}\widehat {AOB} = \frac{1}{2} \cdot 120^\circ = 60^\circ \).
Mà tam giác \[ADB\] cân tại D do \[AD = BD\] nên tam giác \[ADB\] là tam giác đều.
Câu 2
Lời giải
Chọn C
Tổng 6 góc của lục giác đều \[ABCDEF\] bằng tổng các góc trong hai tứ giác \[ABCD\] và \[ABEF.\]
Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]
Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]
Ta có \[AF = AB\] (vì \[ABCDEF\] là lục giác đều) và \[OB = OF\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra \[AO\] là đường trung trực của đoạn BF.
Vì \[AF = AB\] (chứng minh trên) nên tam giác \[ABF\] cân tại \[A.\]
Do đó \[AO\] vừa là đường trung trực, vừa là đường phân giác của tam giác \[ABF.\]
Vì vậy \[\widehat {OAB} = \frac{{\widehat {BAF}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]
Ta có \[OB = OA = 4{\rm{ cm}}\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra tam giác \[OAB\] cân tại O, mà \[\widehat {OAB} = 60^\circ \] (chứng minh trên).
Do đó tam giác \[OAB\] đều, suy ra \[AB = OB = OA = 4{\rm{ cm}}.\]
Vì vậy \[BC = CD = DE = EF = FA = AB = 4{\rm{ cm}}\] (vì \[ABCDEF\] là lục giác đều).
Vậy số đo mỗi cạnh của lục giác đều \[ABCDEF\] đều bằng nhau và bằng \[4{\rm{ cm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Tứ giác \[ABCD\] nội tiếp (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/10-1769712984.png)