Hai vòi nước cùng chảy vào bể thì 6 giờ đầy bể. Nếu mỗi vòi chảy một mình cho đây bể thì vòi thứ hai cần nhiều hơn vòi thứ nhất 3 giờ. Nếu gọi thời gian vòi thứ nhất chảy một mình đầy bể là \(x\) (giờ) với \(x > 6.\) Phương trình của bài toán này là
Quảng cáo
Trả lời:
Chọn A
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là \(x\) (giờ) với \(x > 6.\)
Vì nều mỗi vòi chảy một mình cho đây bể thì vòi thứ hai cần nhiều hơn vòi thứ nhất 3 giờ nên thời gian vòi thứ hai chảy một mình đầy bể là \(x - 3\) (giờ)
Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{x}\) (bể)
Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{{x - 3}}\) (bể)
Trong \(1\) giờ, cả hai vòi chảy được \(\frac{1}{6}\) (bể)
Phương trình của bài toán là: \(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{1}{6}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Gọi số thứ nhất là \(x\) (\(x \in {N^*}\))
⇒ Số thứ hai là \(x + 2\)
Vì tổng bình phương của hai số là \(244\) nên ta có phương trình
\({x^2} + {(x + 2)^2} = 244\)
\( \Leftrightarrow 2{x^2} + 4x - 240 = 0\) Giải phương trình
\( \Leftrightarrow {x^2} + 2x - 120 = 0\).
Ta có \(\Delta = 4 + 480 = 484 > 0\)
vì \(\Delta > 0\): Phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - 2 + 22}}{2} = 10\), \({x_2} = \frac{{ - 2 - 22}}{2} = - 12\)
Với \(x = 10\) (thỏa mãn điều kiện) do đó số thứ nhất là \[10\] và số thứ hai là \[12\]
Với \(x = - 12\) (không thỏa mãn điều kiện) nên loại
Câu 2
Lời giải
Chọn B
Gọi năng suất máy bơm công nhân cho hoạt động là \(x({m^3}/h)\) \(x > 5\)thì
Năng suất theo kế hoạch \(x - 5({m^3}/h)\)
Thời gian theo kế hoạch \(\frac{{50}}{{x - 5}}\)(h) Thời gian thực tế \(\frac{{50}}{x}\) (h)
Ta có phương trình \(\frac{{50}}{x} + \frac{5}{3} = \frac{{50}}{{x - 5}}\)
Giải phương trình được \(x = - 10\) (loại), \(x = 15\) (thỏa mãn)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.