Cho phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right).\) Nếu \(a - b + c = 0\) thì nghiệm của phương trình là
Quảng cáo
Trả lời:
Chọn C
Xét phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right).\
Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\), còn nghiệm kia là \({x_2} = - \frac{c}{a}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Phương trình \[ - 2{x^2} - 6x - 1 = 0\] có \[{\rm{\Delta }} = {( - 6)^2} - 4.( - 2).( - 1) = 28 > 0\] nên phương trình có hai nghiệm \[{x_1};{x_2}\]
Theo hệ thức Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}.{x_2} = \frac{c}{a}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = - 3\\{x_1}.{x_2} = \frac{1}{2}\end{array} \right.\]
Ta có \[N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.( - 3) + 9}} = 6\]
Câu 2
Lời giải
Chọn B
Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình bậc hai
\({x^2} - Sx + P = 0.\)
Điều kiện để có hai số đó là \({S^2} - 4P \ge 0.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.