Câu hỏi:

03/02/2026 9 Lưu

Manhattanhenge (Hình 1) là một sự kiện diễn ra khi Mặt Trời mọc hoặc khi Mặt Trời lặn nằm thẳng hàng với các tuyến phố Đông - Tây thuộc mạng lưới đường phố chính tại quận Manhattan của thành phố New York. Khi mặt trời lặn, tia sáng song song mặt đất lệch một góc khoảng \({38^0}\) so với hướng tây (Hình 2).
Manhattanhenge (Hình 1) là một sự kiện diễn ra khi Mặt Trời mọc hoặc khi Mặt Trời lặn nằm (ảnh 1)
Giả sử mặt tiền các tòa nhà hai bên đường nằm trong 2 mặt phẳng song song cách nhau \(30m\) và vuông góc với mặt đất. Biết rằng mặt phẳng phía bắc đi qua gốc \(O\) của hệ trục \(Oxyz\), với tia \(Oz\) vuông góc với mặt đất và hướng lên trên. Phương trình mặt phẳng thứ hai có dạng \((Q):x + ay + bz + c = 0\), với \(c = \frac{m}{{\sin {n^0}}}\). Tính \(m + n\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

68

Gọi \(A,B\) là giao điểm của mp \(\left( Q \right)\) với trục \(Ox\) và \(Oy\), \(H\) là hình chiếu vuông góc của \(O\) lên \(AB\).

Manhattanhenge (Hình 1) là một sự kiện diễn ra khi Mặt Trời mọc hoặc khi Mặt Trời lặn nằm (ảnh 2)

Vì khoảng cách giữa hai mặt phẳng bằng \(30m\) nên \(OH = 30\)

Theo giả thiết, ta có góc \(\widehat {OAH} = {38^0}\), khi đó \(OA = \frac{{OH}}{{\sin {{38}^0}}} = \frac{{30}}{{\sin {{38}^0}}}\), \({x_H} =  - OH\cos {52^0} =  - 30\cos {52^0}\), \({y_H} =  - OH\cos {38^0} =  - 30\cos {38^0}\)

Tọa độ điểm \(A\left( { - \frac{{30}}{{\sin {{38}^0}}};\,0\,;\,0} \right)\), \(H\left( { - 30\cos {{52}^0};\, - 30\cos {{38}^0};0} \right)\) chọn VTPT \(\overrightarrow n  = \left( {1;\,\frac{{\cos {{38}^0}}}{{\cos {{52}^0}}}\,;\,0} \right)\)

Mặt phẳng \(\left( Q \right)\) đi qua \(A\) vuông góc \(OH\) nhận \(\overrightarrow n \) làm véc tơ pháp tuyến có phương trình

\(\left( {x + \frac{{30}}{{\sin {{38}^0}}}} \right) + \frac{{\cos {{38}^0}}}{{\cos {{52}^0}}}y = 0 \Leftrightarrow x + \frac{{\cos {{38}^0}}}{{\cos {{52}^0}}}y + \frac{{30}}{{\sin {{38}^0}}} = 0\)

Vậy \(m + n = 68\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \[\left( P \right)\] song song với \[\left( \alpha  \right)\] nên \[\left( P \right)\] có phương trình: \[2x + 3y + z + m = 0\], điều kiện \[m \ne 1\].

Khi đó: \[\left( P \right)\] cắt các tia \[{\rm{O}}x\,,{\rm{O}}y\,,{\rm{O}}z\] lần lượt tại các điểm là: \[A\left( { - \frac{m}{2}\,;0\,;0} \right)\], \[B\left( {0\,; - \frac{m}{3}\,;0} \right)\], \[C\left( {0\,;0\,; - \,m} \right)\], với \[m < 0\].

Thể tích khối tứ diện \[OABC\] bằng \[6\] nên \[\frac{1}{6}OA\,.\,OB\,.\,OC = 6\]

\[ \Leftrightarrow \frac{1}{6}.\left| { - \frac{m}{2}} \right|.\left| { - \frac{m}{3}} \right|.\left| { - \,m} \right| = 6 \Leftrightarrow  - \frac{{{m^3}}}{{36}} = 6\] (do \[m < 0\])

\[ \Leftrightarrow {m^3} =  - \,216 \Leftrightarrow m =  - \,6\] (thỏa mãn).

Ta có: \[\left( P \right):2x + 3y + z - 6 = 0\] \[ \Rightarrow d\left( {O;\left( P \right)} \right) = \frac{{\,\left| {\,2.0 + 3.0 + 0 - 6\,} \right|\,}}{{\sqrt {{2^2} + {3^2} + {1^2}} }} = \frac{6}{{\sqrt {14} }} \approx 1,60\].

Lời giải

Gọi \(I\) là trung điểm của \(AB\) nên \(I\left( {1;\;2;\;4} \right)\)

\[MA{\,^2} + MB{\,^2} = {\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)^2} = MI{\,^2} + 2\overrightarrow {MI} .\overrightarrow {IA}  + IA{\,^2} + MI{\,^2} + 2\overrightarrow {MI} .\overrightarrow {IB}  + IB{\,^2}\]

                    \( = 2.MI{\,^2} + 2\overrightarrow {MI} (\overrightarrow {IA}  + \overrightarrow {IB} ) + IA{\,^2} + IB{\,^2} = 2.MI{\,^2} + IA{\,^2} + IB{\,^2}\)

\(MA{\,^2} + MB{\,^2}\) đạt giá trị nhỏ nhất Û \(2.MI{\,^2}\) đạt giá trị nhỏ nhất Û \(MI\) đạt giá trị nhỏ nhất.

\(\left( \alpha  \right):x - 2y + z + 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1;\; - 2;\;1} \right)\)

Do \(M \in \left( \alpha  \right)\) nên \(M\left( {{x_0};\;{y_0};\;{z_0}} \right)\) là hình chiếu vuông góc của \(I\) lên mặt phẳng \(\left( \alpha  \right)\).

Suy ra: \(\left\{ \begin{array}{l}M \in \left( \alpha  \right)\\\overrightarrow {IM}  = k.\overrightarrow n \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 2{y_0} + {z_0} + 5 = 0\\{x_0} - 1 = k\\{y_0} - 2 =  - 2k\\{z_0} - 4 = k\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 0\\{y_0} = 4\\{z_0} = 3\\k =  - 1\end{array} \right.\)

Vậy tung độ của điểm \(M\) là \(4\).

Câu 3

A. \(B\left( {4;\,2;\,1} \right)\).          
B. \(A\left( {1;\,2;\,4} \right)\).          
C. \(D\left( {2;\,1;\,4} \right)\).    
D. \(C\left( {2;\,4;\, - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2x - y = 0\).        
B. \(x + y - z = 0\).      
C. \(3y - 2z = 0\).        
D. \(3x - z = 0\)vô số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[3x + z + 7 = 0\].   
B. \[3x - y - 7z + 1 = 0\].        
C. \[3x + y - 7 = 0\].   
D. \[3x + y - 7z - 3 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Điểm \(A\) cách mặt phẳng \(\left( P \right)\) một khoảng bằng \(5\).

Đúng
Sai

b) Mặt phẳng \[\left( Q \right)\] cắt mặt phẳng \[\left( P \right)\].

Đúng
Sai

c) Mặt phẳng \[\left( R \right):2x + 2y - z = 0\] cách mặt phẳng \[\left( P \right)\] một khoảng bằng 3.

Đúng
Sai
d) Với mọi giá trị m thì hai mặt phẳng \[\left( P \right)\]và \[\left( T \right):x + y + mz + 1 = 0\]cắt nhau.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP