Câu hỏi:

04/02/2026 9 Lưu

Công ty vàng bạc đá quý muốn làm một món đồ trang sức có hình hai hình cầu bằng nhau giao nhau như hình vẽ. Khối cầu có bán kính \[25cm\]khoảng cách giữa hai tâm hình cầu là \[40cm\]. Giá mạ vàng \[1{m^2}\]\[470.000\]đồng. Nhà sản xuất muốn mạ vàng xung quanh món đồ trang sức đó. Tính số tiền cần dùng để mạ vàng khối trang sức đó.

Công ty vàng bạc đá quý muốn làm một món đồ trang sức có hình hai hình cầu bằng nhau giao nhau như hình vẽ. Khối cầu có bán kính \[25cm\]khoảng cách giữa hai tâm hình cầu là \[40cm\] (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Công ty vàng bạc đá quý muốn làm một món đồ trang sức có hình hai hình cầu bằng nhau giao nhau như hình vẽ. Khối cầu có bán kính \[25cm\]khoảng cách giữa hai tâm hình cầu là \[40cm\] (ảnh 2)

(Phần màu nhạt là phần giao nhau của hai khối cầu)

Gọi h là chiều cao của chỏm cầu. Ta có \[h = \frac{{2R - d}}{2} = \frac{{2.25 - 40}}{2} = 5cm\]

(\[d\]là khoảng cách giữa hai tâm)

Diện tích xung quanh của chỏm cầu là:\[{S_{xq}} = 2\pi Rh\]

Vì 2 khối cầu bằng nhau nên 2 hình chỏm cầu bằng nhau.

\[{S_{xq}}\] khối trang sức \[ = 2{S_{xq}}\] khối cầu\[ - 2{S_{xq}}\] chỏm cầu.

Khối trang sức có \[{S_{xq}} = 2.4\pi {R^2} - 2.2\pi Rh = 2.4\pi {.25^2} - 2.2\pi .25.5 = 4500\pi c{m^2} = 0.45{m^2}\]

Vậy số tiền dùng để mạ vàng khối trang sức đó là \[470.000.0,45\pi  \simeq 664.000\]đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một hộp đựng bóng tennis có dạng hình trụ. Biết rằng hộp chứa vừa khít ba quả bóng tennis được xếp theo chiều dọc, các quả bóng tennis có kích thước như nhau. (ảnh 2)

Đặt \(h,\,\,R\) lần lượt là đường cao và bán kính hình tròn đáy của hộp đựng bóng tennis.

Dễ thấy mỗi quả bóng tennis có cùng bán kính \(R\) với hình tròn đáy của hộp đựng bóng tennis và \(h = 6R\).

Do đó ta có:

Tổng thể tích của ba quả bóng là \({V_1} = 3.\frac{4}{3}\pi {R^3} = 4\pi {R^3}\);

Thể tích của hình trụ (hộp đựng bóng) là \({V_0} = \pi {R^2}h = 6\pi {R^3}\);

Thể tích phần còn trống của hộp đựng bóng là \({V_2} = {V_0} - {V_1} = 2\pi {R^3}\).

Khi đó tỉ lệ phần không gian còn trống so với hộp đựng bóng là \(\frac{{{V_2}}}{{{V_0}}} = \frac{1}{3} \approx 0,33\).

Suy ra \(a \approx 33\).

Lời giải

Thể tích hình nón là \[{V_1} = \frac{1}{3}\pi .{R^2}.2R = \frac{2}{3}\pi .{R^3}\]

Thể tích nửa hình cầu là \({V_2} = \frac{1}{2}.\frac{4}{3}\pi .{R^3} = \frac{2}{3}\pi .{R^3}\)

Thể tích của toàn bộ khối đồ vật là:

\({V_1} + {V_2} = 36\pi \)

\(\begin{array}{l}\frac{4}{3}\pi .{R^3} = 36\pi \\ \Rightarrow R = 3\end{array}\)

Diện tích xung quanh của mặt nón là \({S_1} = \pi R.\sqrt {4{R^2} + {R^2}}  = \pi {R^2}\sqrt 5  = 9\sqrt 5 \pi \)

Diện tích của nửa mặt cầu là \({S_2} = \frac{1}{2}.4\pi {R^2} = 18\pi \)

Diện tích bề mặt của toàn bộ đồ vật bằng \({S_1} + {S_2} = 9\pi \left( {\sqrt 5  + 2} \right){\rm{ }}c{m^2}\).