Câu hỏi:

04/02/2026 11 Lưu

Cho hình lập phương \[ABCD.A'B'C'D'\]có cạnh bằng \(a\). Khoảng cách giữa hai mặt phẳng \[(AB'D')\] và \[(C'BD)\]bằng

A. \(\frac{{a\sqrt 3 }}{3}\).   
B. \(a\sqrt 3 \). 
C. \(a\sqrt 2 \). 
D. \(a\sqrt 6 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn  hệ trục toạ độ Đề các vuông góc \(Oxyz\)như sau :  \(O \equiv A(0;0;0)\); \[A'(0;0;a)\]

\(B(a;0;0)\); \[B'(a;0;a)\]; \(C(a;a;0)\); \[C'(a;a;a)\]; \(D(0;a;0)\); \[D'(0;a;a)\].

Cho hình lập phương \[ABCD.A'B'C'D'\]có cạnh bằng \(a\). Khoảng cách giữa hai mặt phẳng (ảnh 1)

Ta có \[\left( {AB'D'} \right)//\left( {C'BD} \right)\]

Véc tơ pháp tuyến của mặt phẳng \[(C'BD)\]là \[\overrightarrow {{n_2}}  = \left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = ( - {a^2}; - {a^2};{a^2})\] hay \[\overrightarrow {{n_2}}  = (1;1; - 1)\].

Phương trình tổng quát của mặt phẳng \[(C'BD)\]là   \[x + y - z - a = 0\].

Phương trình tổng quát của mặt phẳng \[(AB'D')\] là \[x + y - z = 0\].

 \[ \Rightarrow d\left( {(AB'D'),(C'BD)} \right) = d\left( {B,(AB'D')} \right) = \frac{{\left| {a + 0 - 0} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{a}{{\sqrt 3 }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có mặt phẳng \(\left( {Oxz} \right)\) có véctơ pháp tuyến là \({\overrightarrow n _1} = \left( {0;1;0} \right)\), mặt phẳng \(\left( \alpha  \right):x + y - 10z + 2025 = 0\) có véctơ pháp tuyến là \({\overrightarrow n _2} = \left( {1;1; - 10} \right)\). Gọi \(\varphi \) là góc giữa hai mặt phẳng thì \(cos\varphi  = \frac{{\left| {{{\overrightarrow n }_1}.{{\overrightarrow n }_2}} \right|}}{{\left| {{{\overrightarrow n }_1}} \right|\left| {{{\overrightarrow n }_2}} \right|}} = \frac{1}{{\sqrt {102} }}\).

Lời giải

Ta có đường \({\Delta _1}:\left\{ \begin{array}{l}x =  - 2 + t\\y =  - 4 + 2t\\z =  - 1 + 2t\end{array} \right.\) có véctơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( {1;2;2} \right)\), đường \({\Delta _2}:\left\{ \begin{array}{l}x = 2 - 2m\\y = 2 - 2m\\z = 3 + m\end{array} \right.\) có véctơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( { - 2; - 2;1} \right)\). Ta có \(cos\varphi  = \frac{{\left| {{{\overrightarrow u }_1}.{{\overrightarrow u }_2}} \right|}}{{\left| {{{\overrightarrow u }_1}} \right|\left| {{{\overrightarrow u }_2}} \right|}} = \frac{4}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a)Vectơ \[\overrightarrow {{u_1}}  = (2,1,2)\] là một vectơ chỉ phương của đường thẳng \({\Delta _1}\).
Đúng
Sai
b)Vectơ \[\overrightarrow {{u_2}} = ( - 1,2,2)\] là một vectơ chỉ phương của đường thẳng \({\Delta _2}\).
Đúng
Sai
c)Góc giữa hai đường thẳng \({\Delta _1}\)\({\Delta _2}\) xấp xỉ \({64^ \circ }\).
Đúng
Sai
d)Góc giữa đường thẳng \({\Delta _1}\) và trục \[Ox\] xấp xỉ \({40^ \circ }\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP