Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo mét) vào một căn nhà (hình minh họa bên dưới) sao cho điểm \(H\left( {2;{\rm{ }}1;{\rm{ }}2} \right)\). Điểm \(H\) là hình chiếu vuông góc của gốc toạ độ \(O\) xuống mặt phẳng \(\left( P \right)\), số đo góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right):x + y - 11 = 0\) (làm tròn kết quả đến hàng đơn vị)?

Quảng cáo
Trả lời:
Đáp án:
Ta có \(H\) là hình chiếu vuông góc của \(O\) xuống mặt phẳng \(\left( P \right)\) nên \(OH \bot \left( P \right)\). Do đó \(\overrightarrow {OH} = \left( {2;{\rm{ }}1;{\rm{ }}2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).
Mặt phẳng \(\left( Q \right)\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;{\rm{ }}1;{\rm{ }}0} \right)\).
Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( P \right),{\rm{ }}\left( Q \right)\).
Ta có \(\cos \alpha = \frac{{\left| {\overrightarrow {OH} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {OH} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {2.1 + 1.1 + 2.0} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} .\sqrt {{1^2} + {1^2} + {0^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha = 45^\circ \).
Vây góc giữa hai mặt phẳng \(\left( P \right),{\rm{ }}\left( Q \right)\) là \(45^\circ \).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có mặt phẳng \(\left( {Oxz} \right)\) có véctơ pháp tuyến là \({\overrightarrow n _1} = \left( {0;1;0} \right)\), mặt phẳng \(\left( \alpha \right):x + y - 10z + 2025 = 0\) có véctơ pháp tuyến là \({\overrightarrow n _2} = \left( {1;1; - 10} \right)\). Gọi \(\varphi \) là góc giữa hai mặt phẳng thì \(cos\varphi = \frac{{\left| {{{\overrightarrow n }_1}.{{\overrightarrow n }_2}} \right|}}{{\left| {{{\overrightarrow n }_1}} \right|\left| {{{\overrightarrow n }_2}} \right|}} = \frac{1}{{\sqrt {102} }}\).
Câu 2
Lời giải
Ta có đường \({\Delta _1}:\left\{ \begin{array}{l}x = - 2 + t\\y = - 4 + 2t\\z = - 1 + 2t\end{array} \right.\) có véctơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1;2;2} \right)\), đường \({\Delta _2}:\left\{ \begin{array}{l}x = 2 - 2m\\y = 2 - 2m\\z = 3 + m\end{array} \right.\) có véctơ chỉ phương là \(\overrightarrow {{u_2}} = \left( { - 2; - 2;1} \right)\). Ta có \(cos\varphi = \frac{{\left| {{{\overrightarrow u }_1}.{{\overrightarrow u }_2}} \right|}}{{\left| {{{\overrightarrow u }_1}} \right|\left| {{{\overrightarrow u }_2}} \right|}} = \frac{4}{9}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.