Câu hỏi:

06/02/2026 2 Lưu

Gieo đồng thời hai con xúc sắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc sắc là \(7\), biết rằng có ít nhất một con xúc sắc xuất hiện mặt \(5\) chấm.

A. \(\frac{2}{{11}}\). 
B. \(\frac{1}{3}\).     
C. \(\frac{9}{{11}}\). 
D. \(\frac{2}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi \(A\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc sắc là \(7\)” và \(B\) là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt \(5\) chấm”.

Ta có

\(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\);

\(A \cap B = \left\{ {\left( {2;5} \right),\;\left( {5;2} \right)} \right\}\)\( \Rightarrow P\left( {A \cap B} \right) = \frac{2}{{36}}\).

Suy ra \[P\left( {A\left| B \right.} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{2}{{11}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{3}{8}\).     
B. \(\frac{3}{7}\).      
C. \(\frac{1}{8}\).     
D. \(\frac{1}{4}\).

Lời giải

Chọn B

Không gian mẫu là \(\Omega  = \left\{ {TTT,\;TTG,\;TGT,\;TGG,\;GTT,\;GTG,\;GGT,\;GGG} \right\}\) trong đó \(T\) ký hiệu con trai và \(G\) ký hiệu con gái.

Gọi \(A\) là biến cố “Có hai trai, một gái”. Ta có \(A = \left\{ {TTG,\;GTT,\;TGT} \right\}\).

Gọi \(B\) là biến cố “Gia đình có con gái”. Ta có \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).

Có \(A \cap B = \left\{ {TTG,\;GTT,\;TGT} \right\}\) nên \(P\left( {A \cap B} \right) = \frac{3}{8}\).

Vậy \[P\left( {A\left| B \right.} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{3}{7}\].

Lời giải

Chọn A

Ta có bảng sau đây

Để kiểm tra tính chính xác của một xét nghiệm nhằm chẩn đoán bệnh \(X\), người ta chọn một mẫu gồm (ảnh 1)

Gọi \(A\) là biến cố “Người đó mắc bệnh \(X\)”, \(B\) là biến cố “Người đó có xét nghiệm âm tính”.

Khi đó \(A \cap B\) là biến cố “Người đó vừa mắc bệnh \(X\), vừa có xét nghiệm âm tính”.

Từ bảng trên, ta có \(P\left( {A \cap B} \right) = \frac{6}{{5282}}\); \(P\left( B \right) = \frac{{3927}}{{5282}}\).

Vậy xác suất cần tính là \[P\left( {A\left| B \right.} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{6}{{3927}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP