Trong kì kiếm tra môn Toán của một trường THPT có 400 học sinh tham gia, trong đó có 190 học sinh nam và 210 học sinh nữ. Khi công bố kết quả của kì kiểm tra đó, có 100 học sinh đạt điểm giỏi, trong đó có 48 học sinh nam và 52 học sinh nữ. Chọn ra ngẫu nhiên một học sinh trong số 400 học sinh đó. Tính xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ (làm tròn kết quả đến hàng phần trăm).
Câu hỏi trong đề: Đề kiểm tra Xác suất có điều kiện (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án:
Xét hai biến cố sau:
\(A\): “Học sinh được chọn ra đạt điểm giỏi”;
\(B\): “Học sinh được chọn ra là học sinh nữ”.
Khi đó, xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ là xác suất của \(A\) với điều kiện \(B\).
Có 52 học sinh nữ đạt điểm giỏi nên: \(P\left( {A \cap B} \right) = \frac{{52}}{{400}} = 0,13\).
Có 210 học sinh nữ nên: \(P\left( B \right) = \frac{{210}}{{400}} = 0,525\).
Do đó, \(P\left( {A\left| B \right.} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,13}}{{0,525}} \approx 0,25\).
Vậy xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ là \(0,25\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.
Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng:
(trai, trai), (gái, gái), (gái, trai), (trai, gái).
Gọi A là biến cố “Cả hai đứa trẻ đều là con gái”
Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”
Ta có \[P\left( A \right) = \frac{1}{4};P\left( B \right) = \frac{3}{4}\]
Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:
\[P\left( {A \cap B} \right) = P\left( A \right) = \frac{1}{4}\]
Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là
\[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{4}}}{{\frac{3}{4}}} = \frac{1}{3}\]Câu 2
a) Với \(\Omega \) là không gian mẫu. \(n\left( \Omega \right) = 196\).
b) \(P\left( B \right) = \frac{8}{{13}}\)
c) \(P\left( {AB} \right) = \frac{{24}}{{91}}\)
Lời giải
Nam có 14 cách lấy ngẫu nhiên một viên bi trong hộp
Hùng có 13 cách lấy một viên bi còn lại trong hộp (vì Nam lấy bi và không trả lại)
Do đó \(n\left( \Omega \right) = 14.13 = 182\).
b) Sai
Nam có 8 cách lấy một viên bi màu xanh, Hùng có 13 cách lấy một viên bi còn lại trong hộp. Dó đó \(n\left( B \right) = 8.13 = 104 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{4}{7}\).
c) Đúng
Nam có 8 cách lấy một viên bi màu xanh, Hùng có 6 cách lấy một viên bi màu đỏ. Do đó \(n\left( {AB} \right) = 8.6 = 48 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{24}}{{91}}\).
d) Đúng
Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{6}{{13}}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(P\left( {AB} \right) = \frac{1}{6}\)
b) \(P\left( B \right) = \frac{{11}}{{36}}\)
c) \(P\left( {A|B} \right) = \frac{5}{6}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.