Câu hỏi:

09/02/2026 7 Lưu

Để được chọn vào đội tuyển học sinh giỏi môn Toán cấp thành phố, mỗi thí sinh phải vượt qua hai vòng thi. Bạn Hà tham dự cuộc tuyển chọn này. Xác suất để Hà qua được vòng thứ nhất là \(0,8\). Nếu qua được vòng thứ nhất thì xác suất để Hà qua được vòng thứ hai là \(0,7\). Xác suất để bạn Hà được chọn vào đội tuyển này là

A. \(0,06\).      
B. \(0,24\).      
C. \(0,56\).      
D. \(0,875\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố: “Hà qua được vòng thứ nhất” và \(B\) là biến cố: “Hà qua được vòng thứ hai”. Khi đó biến cố: “Hà được chọn vào đội tuyển” là \(AB\).

Ta có \(P\left( {AB} \right) = P\left( A \right).P\left( {B\left| A \right.} \right) = 0,8.0,7 = 0,56\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Xác suất học sinh được chọn là học sinh giỏi bằng \(0,5\).

Đúng
Sai

b) Xác suất học sinh được chọn là học sinh nữ bằng \(0,6\).

Đúng
Sai

c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng \(0,625\).

Đúng
Sai
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng \(0,48\).
Đúng
Sai

Lời giải

Xét hai biến số sau:

\(A\): “Học sinh được chọn là học sinh giỏi”.

\(B\): “ Học sinh được chọn là học sinh nữ”.

a) Đ Xác suất học sinh được chọn là học sinh giỏi: \(P\left( A \right) = \frac{{20}}{{40}} = 0,5\).

b) s Xác suất học sinh được chọn là học sinh nữ: \(P\left( B \right) = \frac{{25}}{{40}} = 0,625 \ne 0,6\).

c) s Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ:

\(P\left( {AB} \right) = \frac{{12}}{{40}} = 0,3 \ne 0,625\).

d) Đ Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh nữ:

\[P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{n\left( {A \cap B} \right)}}{{n\left( B \right)}} = \frac{{12}}{{25}} = 0,48\]

Lời giải

Gọi \(A\) là biến cố: “Người đó đạt bài thi theo phong cách âm nhạc nhạc nhẹ”.

\(B\) là biến cố: “Người đó đạt bài thi theo phong cách âm nhạc dân gian”.

Ta có: \(P\left( A \right) = \frac{{17}}{{20}}\); \(P\left( B \right) = \frac{{15}}{{20}}\); \(P\left( {\overline A \overline B } \right) = \frac{2}{{20}}\).

Do đó: \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - \frac{2}{{20}} = \frac{{18}}{{20}}\).

\(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{{17}}{{20}} + \frac{{15}}{{20}} - \frac{{18}}{{20}} = \frac{{14}}{{20}}\).

Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{14}}{{15}} \approx 0,93\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP