Bác Nam đem gửi tổng số tiền 320 triệu đồng ở hai loại kỳ hạn khác nhau. Bác gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất \[2,1\% \] một quý. Số tiền còn lại bác Nam gửi theo kỳ hạn một tháng với lãi suất \[0,73\% \] một tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi kỳ hạn số tiền lãi sẽ được nhập vào gốc để tính lãi cho kỳ hạn tiếp theo. Sau 15 tháng kể từ ngày gửi bác Nam đi rút tiền. Tính gần đúng đến hàng đơn vị tổng số tiền lãi thu được của bác Nam.
Câu hỏi trong đề: Đề kiểm tra Phép tính lũy thừa (có lời giải) !!
Quảng cáo
Trả lời:
Số tiền nhận về sau 15 tháng của 140 triệu gửi trước là \[140.\,{\left( {1 + 2,1\% } \right)^5}\] triệu.
Số tiền nhận về sau 15 tháng của 180 triệu gửi sau là \[180.\,{\left( {1 + 0,73\% } \right)^{15}}\] triệu.
Suy ra tổng số tiền cả vốn lẫn lãi mà bác Nam thu được là
\[140.\,{\left( {1 + 2,1\% } \right)^5} + 180.\,{\left( {1 + 0,73\% } \right)^{15}} \approx 356,080253\] triệu.
Suy ra số tiền lãi: \[356,080253 - 320 = 360,80253 = 36080253\] đồng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[{\left( {0,7} \right)^{3,2}} < {\left( {0,2} \right)^{0,3}} < {\sqrt 3 ^{0,2}}\].
B. \[{\left( {0,2} \right)^{0,3}} < {\left( {0,7} \right)^{3,2}} < {\sqrt 3 ^{0,2}}\].
Lời giải
\({\left( {0,2} \right)^{0,3}} = {\left( {0,2} \right)^{\frac{3}{{10}}}} = {\left[ {{{\left( {0,2} \right)}^3}} \right]^{\frac{1}{{10}}}} = {\left( {0,008} \right)^{\frac{1}{{10}}}}\).
\({\left( {0,7} \right)^{3,2}} = {\left( {0,7} \right)^{\frac{{32}}{{10}}}} = {\left[ {{{\left( {0,7} \right)}^{32}}} \right]^{\frac{1}{{10}}}}\).
\({\sqrt 3 ^{0,2}} = {\left( 3 \right)^{\frac{1}{2}.\frac{2}{{10}}}} = {3^{\frac{1}{{10}}}}\).
Do \({\left( {0,7} \right)^{32}} < 0,008 < 3\) nên \[{\left( {0,7} \right)^{3,2}} < {\left( {0,2} \right)^{0,3}} < {\sqrt 3 ^{0,2}}\].Câu 2
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.