Sự tăng trưởng của một loại vi khuẩn trong phòng thí nghiệm được tính theo công thức \[S(t) = {S_0}.\,{e^{r.\,\,t}}\]. Trong đó \[{S_0}\] là số lượng vi khuẩn ban đầu, \(S\left( t \right)\) là số lượng vi khuẩn có sau \(t\)( phút), \[r\]là tỷ lệ tăng trưởng \[\left( {r > 0} \right)\],\(t\) ( tính theo phút) là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có \(500\) con và sau \(5\) giờ có \[1500\] con. Hỏi sau bao nhiêu giờ kể từ lúc ban đầu có\(500\) con để số lượng vi khuẩn đạt \(121500\) con?
Câu hỏi trong đề: Đề kiểm tra Phép tính lôgarit (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án:
Ta có:\({S_0} = 500\)(con) ; \(5\) giờ \( = \)\(300\) phút.
Sau \(5\)giờ số vi khuẩn là:\(S\left( {300} \right) = 500.\,\,{e^{300r}}\)\( \Leftrightarrow 1500 = 500.\,\,{e^{300r}}\) \( \Leftrightarrow r = \frac{{\ln 3}}{{300}}\)
Vậy khoảng thời gian \[t\] kể từ lúc bắt đầu có \(500\)con vi khuẩn đến khi số lượng vi khuẩn đạt \(121500\) con thỏa mãn \(121500 = 500.{e^{r\,.\,{t_{}}}}\)
\( \Leftrightarrow t = \frac{{\ln 243}}{r} = \frac{{300\ln 243}}{{\ln 3}} = 1500\)(phút)\( = 25\)(giờ).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[F = {\log _{ab}}\left( {\frac{{{a^2}}}{b}} \right) = \frac{{{{\log }_2}\left( {\frac{{{a^2}}}{b}} \right)}}{{{{\log }_2}\left( {ab} \right)}} = \frac{{2{{\log }_2}a - {{\log }_2}b}}{{{{\log }_2}a + {{\log }_2}b}} = \frac{{2.3 - 7}}{{3 + 7}} = - \frac{1}{{10}}\].
Lời giải
Theo bài ta có \[65 = 100.{\left( {\frac{1}{2}} \right)^{\frac{{3754}}{A}}}\] \[ \Leftrightarrow 0,65 = {\left( {\frac{1}{2}} \right)^{\frac{{3754}}{A}}} \Leftrightarrow \frac{{3754}}{A} = {\log _{\frac{1}{2}}}0,65 \Leftrightarrow A = \frac{{3754}}{{{{\log }_{\frac{1}{2}}}0,65}}\]
Do mẫu gỗ còn \[79\% \] lượng Cacbon 14 nên ta có: \[79 = 100.{\left( {\frac{1}{2}} \right)^{\frac{t}{A}}} \Leftrightarrow 0,79 = {\left( {\frac{1}{2}} \right)^{\frac{t}{A}}}\]
\[ \Leftrightarrow \frac{t}{A} = {\log _{\frac{1}{2}}}0,79 \Leftrightarrow t = A.{\log _{\frac{1}{2}}}0,79 = \frac{{3754}}{{{{\log }_{\frac{1}{2}}}0,65}}.{\log _{\frac{1}{2}}}0,79 \approx 2054\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \({\log _a}\left( {\frac{b}{c}} \right) = {\log _a}c - {\log _a}b\).
B. \({\log _a}\left( {\frac{b}{c}} \right) = {\log _a}b - {\log _a}c\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.