Cho ba điểm \(A,\,\,B,\,\,C\) thẳng hàng, điểm \(B\) nằm giữa hai điểm \(A\) và \(C\). Trên đường thẳng vuông góc với \(AC\) tại \(B\) ta lấy điểm \(M\) (điểm \(M\) không trùng với điểm \(B\)). Khi đó, khẳng định nào sau đây là đúng?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 7 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Theo đề bài, ta có \(MB\) là đường vuông góc, \(MA,\,\,MC\) là đường xiên.
Khi đó, \(AM > BM\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có \(3a = 4b\) với \(a,\,\,b \ne 0\) thì \[\frac{a}{4} = \frac{b}{3}\].
Lời giải
a) Vì \(G\) là trọng tâm của tam giác \(ABC\).
Mà \(AG\) đi qua điểm \(D\) nên \(AD\) là đường trung tuyến của tam giác \(ABC\) hay \(BD = CD\).
Xét \(\Delta ACD\) và \(\Delta KBD\) có:
\(DK = DA\) (giả thiết)
\(\widehat {ADC} = \widehat {BDK}\) (hai góc đối đỉnh)
\(BD = CD\) (chứng minh trên)
Do đó \(\Delta ACD = \Delta KBD\) (c.g.c).
b) Xét \(\Delta GBC\) có \(\widehat {BGC} < 90^\circ \) (giả thiết)
Suy ra \(GD > \frac{1}{2}BC\). (1)
Mà \(G\) là trọng tâm của tam giác \(ABC\) nên \(AG = \frac{2}{3}AD\) suy ra \(DG = \frac{1}{3}AD\) hay \(AD = 3DG\). (2)
Từ (1) và (2) suy ra \(AD > \frac{3}{2}BC\). (3)
Xét \(\Delta ABK\) có \(AB + BK > AK\) (theo bất đẳng thức tam giác)
Mà \(AC = BK\) (vì \(\Delta ACD = \Delta KBD\))
Do đó \(AB + AC > 2AD\) (4)
Từ (3) và (4) suy ra \(AB + AC > 2\,\,.\,\,\frac{3}{2}BC > 3BC\) (đpcm).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.