Một doanh nghiệp sản xuất hàng hóa. Biết tổng chi phí sản xuất \(x\) đơn vị sản phẩm là: \(C\left( x \right) = 2{x^3} - 3{x^2} + 400x + 5000\) (nghìn đồng). Tổng số tiền thu được khi bán \(x\) đơn vị sản phẩm đó là: \(R\left( x \right) = 4000x - 33{x^2}\) (nghìn đồng). Sản lượng tối ưu và doanh thu lúc đó của doanh nghiệp tương ứng là
A. \[30;\;22\] triệu đồng.
B. \[20;\;39\] triệu đồng.
Câu hỏi trong đề: Đề kiểm tra Các quy tắc tính đạo hàm (có lời giải) !!
Quảng cáo
Trả lời:
Điều kiện: \(x > 0,x \in \mathbb{N}\).
Doanh nhiệp thu được lợi nhuận là:
\(P\left( x \right) = R\left( x \right) - C\left( x \right)\)\( = \left( {4000x - 33{x^2}} \right) - \left( {2{x^3} - 3{x^2} + 400x + 5000} \right)\) \( = - 2{x^3} - 30{x^2} + 3600x - 5000\)
Lợi nhuận biên là: \[P'\left( x \right) = - 6{x^2} - 60x + 3600\].
Lợi nhuận tối đa đạt được tại một trong các điểm \({x_0}\) mà \[P'\left( {{x_0}} \right) = 0\].
\[P'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 30\;(loai)\\x = 20\;\;(Thoa\;man)\end{array} \right.\]
Ta có bảng xét dấu của \[P'\left( x \right)\]:

Từ bảng xét dấu của \[P'\left( x \right)\] ta có:
Khi \(x < 20\) thì \[P'\left( x \right) > 0\] nên nếu tiếp tục sản xuất thì lợi nhuận tăng.
Khi \(x > 20\) thì \[P'\left( x \right) > 0\] nên nếu tiếp tục sản xuất thì lợi nhuận giảm.
Vậy mức sản lượng tối ưu là \(20\).
Doanh thu lúc đó là: \(P\left( {20} \right) = 39000\) nghìn đồng hay \(39\) triệu đồng.Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({y^\prime } = {\left( {x \cdot {2^{2x}}} \right)^\prime } = {\left( {x \cdot {4^x}} \right)^\prime } = {x^\prime } \cdot {4^x} + {\left( {{4^x}} \right)^\prime } \cdot x = {4^x} + {4^x} \cdot \ln 4 \cdot x\);
\({y^{\prime \prime }} = {\left( {{4^x} + {4^x} \cdot \ln 4 \cdot x} \right)^\prime } = {\left( {{4^x}} \right)^\prime } + \ln 4 \cdot {\left( {x \cdot {4^x}} \right)^\prime }\) (\({\left( {x \cdot {4^x}} \right)^\prime }\)làm giống bước trên)
\( = {4^x}\ln 4 + \ln 4 \cdot \left( {{4^x} + {4^x} \cdot \ln 4 \cdot x} \right) = 2 \cdot {4^x}\ln 4 + {\ln ^2}4 \cdot {4^x} \cdot x = {4^x} \cdot \ln 4(2 + x\ln 4).\)
Lời giải
Theo giả thiết, ta có: \({x_0} = 2 \Rightarrow {y_0} = 3\), gọi điểm \(M(2;3)\) là toạ độ tiếp điểm.
Ta có: \({y^\prime } = {\left( {{x^3} - x - 3} \right)^\prime } = 3{x^2} - 1\) nên tiếp tuyến của đồ thị tại điểm \(M\) có hệ số góc là \({y^\prime }(2) = 11\).
Phương trình tiếp tuyến của đồ thị đã cho tại điểm \(M\) là:
\(y - 3 = 11(x - 2) \Leftrightarrow y = 11x - 19.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.