Câu hỏi:
13/07/2024 651Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol: y = x2 - 2x
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
y = x2 – 2x có a = 1 ; b = –2 ; c = 0 ; Δ= b2 – 4ac = 4.
+ Đỉnh của Parabol là (1 ; –1).
+ Khi x = 0 thì y = 0. Vậy giao điểm với trục tung là O(0 ; 0).
+ Khi y = 0 thì x2 – 2x = 0. Phương trình có hai nghiệm x = 0 hoặc x = 2.
Vậy Parabol cắt trục hoành tại hai điểm O(0 ; 0) và A(2 ; 0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A(8 ; 0) và có đỉnh là I(6 ; -12).
Câu 2:
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Có đỉnh là I(2; -2)
Câu 3:
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua hai điểm M(1; 5) và N(-2; 8)
Câu 4:
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua điểm B(-1; 6) và tung độ của đỉnh là -1/4.
Câu 5:
Lập bảng biến thiên và vẽ đồ thị của các hàm số: y = -x2 + 4x - 4
Câu 6:
Lập bảng biến thiên và vẽ đồ thị của các hàm số: y = -3x2 + 2x - 1
Câu 7:
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua hai điểm A(3; -4) và có trục đối xứng là x = -3/2
về câu hỏi!