Câu hỏi:
13/07/2024 509Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol: y = -x2 + 4
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
y = –x2 + 4 có a = –1 ; b = 0 ; c = 4 ; Δ= b2 – 4ac = 0 – 4.( –1).4 = 16.
+ Đỉnh của Parabol là (0 ; 4).
+ Khi x = 0 thì y = 4. Vậy giao điểm với trục tung là A(0 ; 4).
+ Khi y = 0 thì –x2 + 4 = 0. Phương trình có hai nghiệm x = 2 hoặc x = –2.
Vậy Parabol cắt trục hoành tại hai điểm B(2 ; 0) hoặc C(–2 ;0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A(8 ; 0) và có đỉnh là I(6 ; -12).
Câu 2:
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Có đỉnh là I(2; -2)
Câu 3:
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua hai điểm M(1; 5) và N(-2; 8)
Câu 4:
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua điểm B(-1; 6) và tung độ của đỉnh là -1/4.
Câu 5:
Lập bảng biến thiên và vẽ đồ thị của các hàm số: y = -x2 + 4x - 4
Câu 6:
Lập bảng biến thiên và vẽ đồ thị của các hàm số: y = -3x2 + 2x - 1
Câu 7:
Lập bảng biến thiên và vẽ đồ thị của các hàm số: y = -x2 + x - 1
về câu hỏi!