Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chứng minh rằng AK+CE = BE.
Câu hỏi trong đề: Giải Sách Bài Tập Toán 8 Tập 1 !!
Quảng cáo
Trả lời:

Trên tia đối của tia CD lấy điểm M sao cho CM = AK
Ta có: AK + CE = CM + CE = EM (1)
Xét ΔABK và ΔCBM, ta có:
AB = CB (gt)
AK = CM (theo cách vẽ)
Suy ra: ΔABK = ΔCBM (c.g.c)
Do đó (2)
Lại có: ( do BK là tia phân giác của ABE)
Suy ra:
Mà (3)
Tam giác CBM vuông tại C nên: (4)
Từ (2), (3) và (4) suy ra: (5)
Hay
⇒ (vì )
Hay
Suy ra ΔEBM cân tại E
Do đó EM = BE (6)
Từ (1) và (6) suy ra: AK + CE = BE.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì ΔABC vuông cân tại A nên B = C =
Vì ΔBHE vuông tại H có B = nên ΔBHE vuông cân tại H.
Suy ra HB = HE
Vì ΔCGF vuông tại G, có C = nên ΔCGF vuông cân tại G
Suy ra GC = GF
Ta có: BH = HG = GC (gt)
Suy ra: HE = HG = GF
Vì EH // GF (hai đường thẳng cũng vuông góc với đường thắng thứ ba) nên tứ giác HEFG là hình bình hành (vì có một cặp cạnh đối song song bằng nhau);
Lại có (EHG) = nên HEFG là hình chữ nhật.
Mà EH = HG (chứng minh trên).
Vậy HEFG là hình vuông.
Lời giải
Xét ABF và DAE,ta có: AB = DA (gt)
(BAF) = (ADE) =
AF = DE (gt)
Suy ra: ΔABF = ΔDAE (c.g.c)
⇒ BF = AE và =
Gọi H là giao điểm của AE và BF.
Ta có: (BAF) = + =
Suy ra: + =
Trong ΔABH,ta có: (AHB) + + =
⇒ ((AHB) ) = – (+ ) = – =
Vậy AE ⊥ BF
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.