Câu hỏi:

11/07/2024 1,611

Viết phương trình của đường thẳng nằm trong mặt phẳng (α): x + 2z = 0 và cắt hai đường kính

d1x=1-ty=tz=4td2x=2-t'y=4+2t'z=4

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi A và B lần lượt là giao điểm của d1 và d2 với (α). Đường thẳng  cần tìm chính là đường thẳng AB.

Ta có: A(1 − t; t; 4t)  d1

(α) ⇔ t + 4.(2t) = 0 ⇔ t = 0

Suy ra: A(1; 0; 0)

Ta có : B(2 − t′; 4 + 2t′; 4)  d2

 (α) ⇔ 4 +2t′ + 8 = 0 ⇔ t′ = −6

Suy ra B(8; -8; 4)

 đi qua A, B nên có vecto chỉ phương a=AB = (7; −8; 4)

Phương trình chính tắc của  là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình tham số của đường thẳng d: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vecto chỉ phương của hai đường thẳng d và d’lần lượt là a = (−1; 2; 3), a' = (1; −2; 0).

Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’; 1) trên d’ ta có MM' = (t′ + t; 1 − 2t′ − 2t; 1 − 3t).

MM’ là đường vuông góc chung của d và d’.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thay giá trị của t và t’ vào ta được tọa độ M và M’ là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó MM' = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra đường vuông góc chung Δ của d và d’ có vecto chỉ phương u = (2; 1; 0)

Vậy phương trình tham số của là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét phương trình:

2(1 + 2t) + (t) + (−2 – 3t) – 1 = 0 ⇔ 2t – 1= 0 ⇔ t = 1/2

Vậy đường thẳng d cắt mặt phẳng (α) tại điểm M(2; 1/2; −7/2).

Ta có vecto pháp tuyến của mặt phẳng (α) và vecto chỉ phương của đường thẳng d lần lượt là nα = (2; 1; 1) và ad = (2; 1; −3).

Gọi a là vecto pháp tuyến của Δ, ta có a  nα và a  ad

Suy ra anα  nd = (−4; 8; 0) hay a = (1; −2; 0)

Vậy phương trình tham số của là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay