Câu hỏi:

11/07/2024 2,165

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và DD’.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ, CD=aiCB=aj; CC'=ak

Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a; 0; 0), D’(a; 0; a)

CA' = (a; a; a), DD' = (0; 0; a)

 

Gọi (α) là mặt phẳng chứa CA' và song song với DD'. Mặt phẳng (α) có vecto pháp tuyến là: n = CA'  DD' = (a2; −a2; 0) hay x – y = 0

Phương trình tổng quát của (α) là x – y = 0.

Ta có:

d(CA′, DD′) = d(D,(α)) = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa hai đường thẳng CA’ và DD’ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình tham số của đường thẳng d: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vecto chỉ phương của hai đường thẳng d và d’lần lượt là a = (−1; 2; 3), a' = (1; −2; 0).

Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’; 1) trên d’ ta có MM' = (t′ + t; 1 − 2t′ − 2t; 1 − 3t).

MM’ là đường vuông góc chung của d và d’.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thay giá trị của t và t’ vào ta được tọa độ M và M’ là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó MM' = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra đường vuông góc chung Δ của d và d’ có vecto chỉ phương u = (2; 1; 0)

Vậy phương trình tham số của là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét phương trình:

2(1 + 2t) + (t) + (−2 – 3t) – 1 = 0 ⇔ 2t – 1= 0 ⇔ t = 1/2

Vậy đường thẳng d cắt mặt phẳng (α) tại điểm M(2; 1/2; −7/2).

Ta có vecto pháp tuyến của mặt phẳng (α) và vecto chỉ phương của đường thẳng d lần lượt là nα = (2; 1; 1) và ad = (2; 1; −3).

Gọi a là vecto pháp tuyến của Δ, ta có a  nα và a  ad

Suy ra anα  nd = (−4; 8; 0) hay a = (1; −2; 0)

Vậy phương trình tham số của là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay