Câu hỏi:

26/06/2020 375

Cho hai đường thẳng:

d: x=6y=-2tz=7+t và d1: x=-2+t'y=-2z=-11-t'

Lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đường thẳng d đi qua M(6; 0 ;7) có vecto chỉ phương a (0; −2; 1). Đường thẳng d1 đi qua N(-2; -2; -11) có vecto chỉ phương b (1; 0; −1).

Do d và d1 chéo nhau nên (P) là mặt phẳng đi qua trung điểm của đoạn vuông góc chung AB của d, d1 và song song với d và d1.

Để tìm tọa độ của A, B ta làm như sau:

Lấy điểm A(6; - 2t; 7 + t) thuộc d, B( -2 + t’; -2; -11 – t’) thuộc d1. Khi đó: AB = (−8 + t′; −2 + 2t; −18 – t − t′)

Ta có: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra A(6; 4; 5), B(-6; -2; -7)

Trung điểm của AB là I(0; 1; -1)

Ta có: AB = (−12; −6; −12). Chọn nP = (2; 1; 2)

Phương trình của (P) là: 2x + (y – 1) + 2(z + 1) = 0 hay 2x + y + 2z + 1 = 0.

Có thể tìm tọa độ của A, B bằng cách khác:

Ta có: Vecto chỉ phương của đường vuông góc chung của d và d1 là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 = (2; 1; 2)

Gọi (Q) là mặt phẳng chứa d và đường vuông góc chung AB.

Khi đó:

 nQ=aab

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình của (Q) là : –5(x – 6) + 2y + 4(z – 7) = 0 hay –5x + 2y + 4z + 2 = 0

Để tìm d1 (Q) ta thế phương trình của d1 vào phương trình của (Q). Ta có:

–5(–2 + t′) + 2(–2) + 4(–11 – t′) + 2 = 0

⇒ t′ = 4

⇒ d1 (Q) = B(−6; −2; −7)

Tương tự, gọi (R) là mặt phẳng chứa d1 và đường vuông góc chung AB. Khi đó: nR = (−1; 4; −1)

Phương trình của (R) là –x + 4y – z – 5 = 0.

Suy ra d (R) = A(6; 4; 5).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: x=-3+2ty=1-tz=-1+4t

Viết phương trình đường thẳng đi qua A , cắt và vuông góc với đường thẳng d.

Xem đáp án » 13/07/2024 9,691

Câu 2:

Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và song song với mặt phẳng (Q): x – z = 0.

Xem đáp án » 11/07/2024 2,796

Câu 3:

Cho mặt phẳng (P) : x + 2y – 2z + 3 = 0

và đường thẳng d: x=1+ty=1+tz=9

Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).

Xem đáp án » 13/07/2024 2,338

Câu 4:

Cho hai mặt phẳng:

(P1): 2x + y + 2z + 1 = 0 và (P2): 4x – 2y – 4z + 7 = 0.

Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.

Xem đáp án » 13/07/2024 1,554

Câu 5:

Lập phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng

(P1): 2x + y + 2z + 1 = 0 và (P2): 2x + y + 2z + 5 = 0.

Xem đáp án » 13/07/2024 1,293

Câu 6:

Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.

Xem đáp án » 13/07/2024 820

Câu 7:

Lập phương trình mặt phẳng (P) chứa hai đường thẳng: d: x=-2-ty=1+4tz=1-t và d': x=-1+t'y=-3+4t'z=2-3t'

Xem đáp án » 25/06/2020 777

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn