Câu hỏi:

26/06/2020 1,702

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A và AB = SB = a, SB vuông góc với mặt phẳng (ABC). Bán kính nhỏ nhất của mặt cầu tiếp xúc với đường thẳng SC và AB là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Mặt cầu S(I,r) tiếp xúc với AB, SC lần lượt tại T, K. Khi đó ta có:

2r = IT + IK ≥ d(AB; SC) => r ≥ d(AB, SC)/2

Dựng hình bình hành ABDC, khi đó ta có ABDC là hình vuông cạnh a. Hạ BH vuông góc với SD tại H. Khi đó ta có BH (SCD).

Suy ra: d(SC; AB) = d(AB, (SCD)) = d(B; (SCD))

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Cho hình chóp tứ giác đều S.ABCD.

Gọi H là tâm đáy thì SH là trục của hình vuông.

Gọi M là trung điểm của ABCD .

Trong mp (SDH) kẻ trung trực của đoạn SD cắt SH tại O

Thì OS = OA = OC = OD

Nên O chính là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD .

Bán kính mặt cầu là R = SO.

Ta có:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP