Câu hỏi:

10/07/2020 662

Hàm số nào sau đây không đồng biến trên khoảng (-∞;+∞)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính f'(x)

- Bước 2: Tìm các điểm tại đó f'(x) = 0 hoặc f'(x) không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

=> Hàm số đồng biến trên các khoảng (-∞;-2);(-2;+∞)

+) y = x3 + 2 ⇒ y'= 3x2 ≥ 0,∀ x∈R: Hàm số đồng biến trên R.

+) y = x + 1 ⇒ y' = 1 > 0, ∀ x∈R: Hàm số đồng biến trên R.

+) y = x5 + x3 - 1 ⇒ y' = 5x4 + 3x2 ≥ 0, ∀ x ∈ R; y' = 0 ⇔ x = 0 ⇒ Hàm số đồng biến trên R.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp: (uv)' = u'v + uv'

Cách giải:

Lời giải

Đáp án A

Phương pháp:

Công thức lãi kép, không kỳ hạn: An = M(1 + r%)n

Với:

  An là số tiền nhận được sau tháng thứ n,

  M là số tiền gửi ban đầu,

  n là thời gian gửi tiền (tháng),

  r là lãi suất định kì (%)

Cách giải:

Số tiền ông An rút lần 1 là: 100.(1 + 8%)5 = 146,9328077 (triệu đồng)

Số tiền ông An gửi lần 2 là: 146.9328077 : 2 = 73,46640384 (triệu đồng)

Số tiền ông An rút lần 2 (gửi 5 năm tiếp theo) là:

73,46640384.(1 + 8%)5 = 107,9462499 (triệu đồng)

Số tiền lãi là: 107,9462499 - 73,4660384 = 34,47984602 ≈ 34,480 (triệu đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP