Quảng cáo
Trả lời:
Cả ba phương trình trên đều là phương trình trùng phương.
a)
Đặt t ≥ 0.
(1) trở thành:
Giải (2):
Có a = 3; b = -12; c = 9
⇒ a + b + c = 0
⇒ (2) có hai nghiệm
Cả hai nghiệm đều thỏa mãn điều kiện.
Vậy phương trình có tập nghiệm
b)
Đặt , t ≥ 0.
(1) trở thành:
Giải (2) :
Có a = 2 ; b = 3 ; c = -2
⇒ (2) có hai nghiệm
nên loại.
Vậy phương trình có tập nghiệm
c)
Đặt
(1) trở thành:
Giải (2):
Có a = 1; b = 5; c = 1
⇒ Phương trình có hai nghiệm:
Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
Có a = 1; b = -1; c = -2 ⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 2.
Vậy tập nghiệm của phương trình là S = {-1; 2}
b) + Đường thẳng y = x + 2 cắt trục Ox tại (-2; 0) và cắt Oy tại (0; 2).
+ Parabol đi qua các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4).
c) Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:
Phương trình (*) chính là phương trình đã giải ở ý (a) Do đó hai nghiệm ở câu (a) chính là hoành độ giao điểm của hai đồ thị
Lời giải
- Bảng giá trị:
| x | -4 | -2 | 0 | 2 | 4 |
| 4 | 1 | 0 | 1 | 4 | |
| -4 | -1 | 0 | -1 | -4 |
- Vẽ đồ thị:
a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.
b) + Từ điểm M và M’ kẻ đường thẳng song song với trục Oy cắt đồ thị tại N và N’.
+ MM’N’N là hình chữ nhật ⇒ NN’ // MM’ // Ox.
Vậy NN’ // Ox.
+ Tìm tung độ N và N’.
Từ hình vẽ ta nhận thấy : N(-4 ; -4) ; N’(4 ; -4).
Tính toán :
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.