Câu hỏi:
15/07/2020 1,119Cho hình chóp S.ABCD có SA⊥(ABCD) và ΔABC vuông ở B, AH là đường cao của ΔSAB. Khẳng định nào sau đây sai?
Câu hỏi trong đề: Top 4 Đề thi Toán 11 Học kì 2 có đáp án !!
Quảng cáo
Trả lời:
Chọn C.
+) Do SA ⊥ (ABCD) ⇒ SA ⊥ BC nên câu A đúng.
+) Tam giác ABC vuông ở B nên AB ⊥ BC
- Lại có: SA ⊥ BC (vì SA ⊥ (ABCD))
→ Do đó: BC ⊥ (SAB) ⇒ AH ⊥ BC.
nên câu B đúng.
+) Theo trên ta có:
⇒ D đúng.
- Vậy câu C sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D.
- Ta có:
+) Giao điểm của tiếp tuyến của đồ thị (C) tại giao điểm của (C) và trục Ox là
+ ) Tiếp tuyến tại A có phương trình:
+) Tiếp tuyến tại A có hệ số góc
- Giải hệ phương trình (1) và (2) ta được: a = -1, b = 4.
Lời giải
Đáp án A
- Tập xác định: D = R.
- Đạo hàm:
- Tung độ tiếp điểm bằng 2 nên hoành độ tiếp điểm là nghiệm phương trình:
+) Tại M(1; 2) thì y’(1) = 8. Phương trình tiếp tuyến là:
y = 8(x-1) +2 hay y = 8x – 6
+) Tại N(-1; 2) thì y’ (-1) = - 8. Phương trình tiếp tuyến là:
y = - 8(x + 1) + 2 hay y = -8x - 6.
- Vậy có 2 tiếp tuyến thỏa mãn đề bài là: y = 8x – 6 và y = -8x – 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.