Câu hỏi:
13/07/2024 1,004Cho tứ diện ABCD có tam giác ABC là tam giác đều cạnh a, AD vuông góc với BC, AD = a và khoảng cách từ điểm D đến đường thẳng BC là a . Gọi H là trung điểm BC, I là trung điểm AH. Chứng minh rằng đường thẳng BC vuông góc với mặt phẳng (ADH) và DH = a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CMR: BC ⊥ (ADH) và DH = a.
● Δ ABC đều, H là trung điểm BC nên AH BC, AD BC
⇒ BC ⊥ (ADH) ⇒ BC ⊥ DH.
⇒ DH = d(D, BC) = a
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số , có đồ thị là (C). Tìm biết tiếp tuyến của đồ thị (C) tại giao điểm của (C) và trục Ox có phương trình là
Câu 2:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ tiếp điểm bằng 2 là:
về câu hỏi!