Câu hỏi:

19/02/2021 314,287 Lưu

Cho hình lăng trụ ABC. A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a34. Tính theo a thể tích V của khối lăng trụ ABC. A'B'C'.

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Gọi G là trọng tâm tam giác ABC và M là trung điểm của BC

Ta có A'GABC nên A'GBC; BCAMBCMAA'

Kẻ MIAA'BCIM nên dAA'; BC=IM=a34

Kẻ GHAA', ta có 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Diện tích đáy là B=SABC=a234.

Chiều cao là h = d((ABC); (A'B'C')) = AA'

Do tam giác ABC là tam giác đều nên O là trọng tâm của tam giác ABC. Gọi I là trung điểm của BC, H là hình chiếu vuông góc của A lên A'I ta có:

Xét tam giác A'AI vuông tại A ta có:

Lời giải

Chọn C

Gọi E là điểm đối xứng của C qua điểm B. Khi đó tam giác ACE vuông tại A.

AE=4a2-a2=a3

Mặt khác, ta có BC'=B'E=AB' nên tam giác AB'E vuông cân tại B'.

AB'=AE2=a32=a62

Suy ra: AA'=a622-a2=a22

Vậy V=a22.a234=a368

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP