Câu hỏi:

29/07/2020 321

Trong không gian với hệ trục tọa độ Oxyz, cho 3 điểm M(1;1;1), N(1;0;-2), P(0;1;-1). Gọi G(x0;y0;z0) là trực tâm tam giác MNP. Tính x0 + z0

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp: G là trực tâm tam giác MNP 

Cách giải: G(x0;y0;z0) là trực tâm tam giác MNP 

Mặt phẳng (MNP) có một VTPT 

Phương trình (MNP): 2x+3y-z-4=0

Từ (1),(2),(3), suy ra 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

- Sử dụng phương pháp tọa độ hóa.

- Công thức tính khoảng cách giữa hai đường thẳng chéo nhau:

Cho  có VTCP u và qua M; có VTCP v và qua M’

Cách giải:

Gắn hệ trục tọa độ như hình vẽ, trong đó:

A'(0;0;0), B'(0;a;0), C'(a;a;0), D'(a;0;0)

A(0;0;a), B(0;a;a), C(a;a;a); D(a;0;a), M(a/2;a;a)

Đường thẳng AM có VTCP  và qua A(0;0;a)

Đường thẳng DB’ có VTCP  và qua D(a;0;a)

AD =(a;0;0)

Khoảng cách giữa hai đường thẳng AM và DB’: 

 

Ta có:

 

Vây, khoảng cách giữa AM và DB’ là a27 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP