Câu hỏi:

31/07/2020 346 Lưu

Hình chóp S.ABCD có đáy là hình vuông, hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy. AH, AK lần lượt là đường cao của tam giác SAB, tam giác SAD. Mệnh đề nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Sử dụng mối quan hệ vuông góc giữa đường thẳng với đường thẳng, đường thẳng với mặt phẳng.

- Hai mặt phẳng cùng vuông góc với đường thẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng đó.

- Một đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó.

- Một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

 SABABCDSADABCDSABSAD=SASAABCDSABC

AHSB  nênAHSBCAHSC.

Tương tự ta cóAKSCDAHSC.

Do đó SCAHKSCHKA đúng.

 SAABCDSAACBđúng.

  BCAHcmtC đúng. 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

 Khảo sát hàm số, tìm khoảng đồng biến, nghịch biến.

y'=2x 6x22x.x2=2x62x2=0x=0;x=±3.

Vậy hàm số đồng biến trên ;3;0;3

Câu 2

Lời giải

Đáp án C

 Vẽ hình và quan sát, chọn đáp án.

Quan sát hình vẽ bên ta thấy khối chóp S.ABCD được chia thành hai khối tứ diện S.ABC  SADC hay hai khối tứ diện CSAB và C.SAD

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP