Câu hỏi:
03/02/2021 1,163Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Điểm cách đều bốn điểm A, B, C, D là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CD ⊥ (ABC) vì CD ⊥ AB và CD ⊥ BC
AB ⊥ (BCD) vì AB ⊥ BC và AB ⊥ CD
Phương án A sai vì tam giác ABC không vuông góc tại C nên trung điểm của AB không cách đều ba điểm A, B, C
Phương án B sai vì tam giác ABC không vuông góc tại A nên trung điểm của BC không cách đều ba điểm A, B, C
Phương án C đúng vì :
Tam giác ABD vuông tại B có BK là đường trung tuyến nên: (1)
Tam giác ACD vuông tại C có CK là đường trung tuyến ứng với cạnh huyền AD nên:
(2)
Từ (1).(2) suy ra: AK = BK = CK = DK
Do đó ,điểm K cách đều 4 điểm A; B; C; D.
Phương án D sai vì tam giác CBD không vuông góc tại B nên trung điểm của CD không cách đều ba điểm B, C, D.
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
Hai mặt phẳng (SAC) và (AHK) vuông góc vì:
Câu 2:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng ∝
Tan của góc giữa mặt bên và mặt đáy bằng:
Câu 3:
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.
Khằng định nào sau đây đúng?
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.
Mặt phẳng (ABCD) vuông góc với mặt phẳng:
Câu 5:
Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc.
DE bằng:
Câu 6:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
Hai mặt phẳng (SAB) và (SBC) vuông góc vì.
về câu hỏi!