Đăng nhập
Đăng ký
3543 lượt thi 15 câu hỏi 25 phút
5013 lượt thi
Thi ngay
4719 lượt thi
4023 lượt thi
3409 lượt thi
4999 lượt thi
4122 lượt thi
4060 lượt thi
3808 lượt thi
2898 lượt thi
5194 lượt thi
Câu 1:
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
A. 2
B. 3
C. 1
D. Vô số
Câu 2:
Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau.
B. Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
C. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.
D. Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau.
Câu 3:
A. Cho hai đường thẳng song song a và b và đường thẳng c sao cho c⊥a, c⊥b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a,b).
B. Cho a⊥(α), mọi mặt phẳng (β) chứa a thì (β)⊥(α).
C. Cho a⊥b, mọi mặt phẳng chứa b đều vuông góc với a.
D. Cho a⊥b, nếu a⊂(α) và b⊂(β) thì (α)⊥(β).
Câu 4:
Trong các mệnh đề sau, mệnh đề nào sau đây là đúng?
A. Hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia.
B. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau.
C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
D. Hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này và vuông góc với giao tuyến của hai mặt phẳng sẽ vuông góc với mặt phẳng kia
Câu 5:
A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
B. Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước.
C. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
D. Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
Câu 6:
A. Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d.
B. Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).
C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau.
D. Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.
Câu 7:
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc. Chỉ ra mệnh đề sai trong các mệnh đề sau:
A. Ba mặt phẳng (ABC),(ABD),(ACD) đôi một vuông góc.
B. Hình chiếu của A lên mặt phẳng (BCD) là trực tâm của tam giác BCD.
C. Tam giác BCD vuông.
D. Hai cạnh đối của tứ diện vuông góc.
Câu 8:
Cho hình hộp đứng ABCD.A'B'C'D’. Xét tất cả các hình bình hành có đỉnh là đỉnh của hình hộp đó. Hỏi có bao nhiêu hình bình hành mà mặt phẳng chứa nó vuông góc với mặt phẳng đáy (ABCD)?
A. 4
B. 6
C. 8
D. 10
Câu 9:
Cho hình chóp S.ABC có SA vuông góc (ABC), tam giác ABC vuông tại B, kết luận nào sau đây sai?
A. (SAC)⊥(SAB)
B. (SAB)⊥(ABC)
C. (SAC)⊥(ABC)
D. (SAB)⊥(SBC)
Câu 10:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?
A. BM⊥AC.
B. (SBM)⊥(SAC).
C. (SAB)⊥(SBC).
D. (SAB)⊥(SAC).
Câu 11:
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = BC = a, SA = a3, SA vuông góc (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) là
A. 450
B. 600
C. 900
D. 300
Câu 12:
Trong lăng trụ đều, khẳng định nào sau đây sai?
A. Đáy là đa giác đều.
B. Các mặt bên là những hình chữ nhật nằm trong mặt phẳng vuông góc với đáy.
C. Các cạnh bên là những đường cao.
D. Các mặt bên là những hình bình hành.
Câu 13:
Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?
A. Góc giữa hai mặt phẳng (ABC) và (ABD) là CBD^.
B. Góc giữa hai mặt phẳng (ACD) và (BCD) là AIB^.
C. BCD⊥AIB
D. ACD⊥AIB
Câu 14:
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính của góc giữa một mặt bên và một mặt đáy.
A. 12
B. 13
C. 13
D. 12
Câu 15:
Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) vuông góc với mặt phẳng (ABC), tam giác ABC vuông cân ở A và có đường cao AH H∈BC. Gọi O là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây sai?
A. SC⊥ABC
B. O∈SH
C. SAH⊥SBC
D. SBC,ABC^=SBA^
709 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com